A105424 The part of n in base phi left of the decimal point, using a greedy algorithm representation (more precisely, using the Bergman-canonical representation).
0, 1, 10, 100, 101, 1000, 1010, 10000, 10001, 10010, 10100, 10101, 100000, 100010, 100100, 100101, 101000, 101010, 1000000, 1000001, 1000010, 1000100, 1000101, 1001000, 1001010, 1010000, 1010001, 1010010, 1010100, 1010101, 10000000
Offset: 0
Examples
2 = 10.01 in base phi, so left of the decimal point is 10. The first few numbers written in base phi: 0 = 0. 1 = 1. 2 = 10.01 3 = 100.01 4 = 101.01 5 = 1000.1001 6 = 1010.0001 7 = 10000.0001 8 = 10001.0001 9 = 10010.0101 10 = 10100.0101 11 = 10101.0101 12 = 100000.101001 13 = 100010.001001 14 = 100100.001001 15 = 100101.001001 16 = 101000.100001 17 = 101010.000001 18 = 1000000.000001 19 = 1000001.000001 20 = 1000010.010001 21 = 1000100.010001 22 = 1000101.010001 23 = 1001000.100101 24 = 1001010.000101 ...
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- F. Michel Dekking, How to add two natural numbers in base phi, arXiv:2002.01665 [math.NT], 5 Feb 2020.
- Ron Knott, Phigits and the Base Phi representation.
- Ron Knott, Phigits and the Base Phi representation [Local copy, pdf only]
- Jeffrey Shallit, Proving Properties of phi-Representations with the Walnut Theorem-Prover, arXiv:2305.02672 [math.NT], 2023. [Note that this document has been revised multiple times.]
Crossrefs
Programs
-
Mathematica
nn = 1000; len = 2*Ceiling[Log[GoldenRatio, nn]]; Table[d = RealDigits[n, GoldenRatio, len]; FromDigits[Take[d[[1]], d[[2]]]], {n, 0, nn}] (* T. D. Noe, May 20 2011 *)
Extensions
Definition clarified by N. J. A. Sloane, May 27 2023