cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105450 a(n) = binomial(n+5,6) + binomial(n+3,3) + binomial(n+2,3) + binomial(n-1,1).

Original entry on oeis.org

0, 6, 22, 60, 142, 305, 607, 1134, 2008, 3396, 5520, 8668, 13206, 19591, 28385, 40270, 56064, 76738, 103434, 137484, 180430, 234045, 300355, 381662, 480568, 600000, 743236, 913932, 1116150, 1354387, 1633605, 1959262, 2337344, 2774398, 3277566, 3854620
Offset: 0

Views

Author

D. G. Rogers, May 07 2005

Keywords

Comments

Number of directed column-convex polyominoes with perimeter 2(n+4) having n cells in the foundational column.
A051743 and this sequence form successive diagonals in an array that has as row sums the sequence A006027.

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n+5,6]+Binomial[n+3,3]+Binomial[n+2,3]+ Binomial[n-1,1],{n,0,50}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,6,22,60,142,305,607},51] (* Harvey P. Dale, Jun 28 2011 *)
  • PARI
    a(n)=n*(n^5+15*n^4+85*n^3+465*n^2+1354*n+2400)/720 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(0)=0, a(1)=6, a(2)=22, a(3)=60, a(4)=142, a(5)=305, a(6)= 607, a(n)=7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)- 7*a(n-6)+a(n-7). - Harvey P. Dale, Jun 28 2011
G.f.: (2*x^6-11*x^5+26*x^4-32*x^3+20*x^2-6*x)/(x-1)^7. - Harvey P. Dale, Jun 28 2011