A105459 Decimal expansion of Hlawka's Schneckenkonstante K = -2.157782... (negated).
2, 1, 5, 7, 7, 8, 2, 9, 9, 6, 6, 5, 9, 4, 4, 6, 2, 2, 0, 9, 2, 9, 1, 4, 2, 7, 8, 6, 8, 2, 9, 5, 7, 7, 7, 2, 3, 5, 0, 4, 1, 3, 9, 5, 9, 8, 6, 0, 7, 5, 6, 2, 4, 5, 5, 1, 5, 4, 8, 9, 5, 5, 5, 0, 8, 5, 8, 8, 6, 9, 6, 4, 6, 7, 9, 6, 6, 0, 6, 4, 8, 1, 4, 9, 6, 6, 9, 4, 2, 9, 8, 9, 4, 6, 3, 9, 6, 0, 8, 9, 8
Offset: 1
Examples
-2.157782996659446220929142786829577723504139598607562455...
References
- P. J. Davis, Spirals from Theodorus to Chaos, A K Peters, Wellesley, MA, 1993.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..16384
- David Brink, The spiral of Theodorus and sums of zeta-values at the half-integers, The American Mathematical Monthly, Vol. 119, No. 9 (November 2012), pp. 779-786.
- Edmund Hlawka, Gleichverteilung und Quadratwurzelschnecke, Monatsh. Math., 89 (1980) 19-44. [For a summary in English see the Davis reference, pp. 157-167.]
- Herbert Kociemba, The Spiral of Theodorus.
Programs
-
Maple
evalf(Sum((-1)^k*Zeta(k + 1/2)/(2*k+1), k=0..infinity), 120); # Vaclav Kotesovec, Mar 01 2016
-
Mathematica
RealDigits[ NSum[(-1)^k*Zeta[k + 1/2]/(2 k + 1), {k, 0, Infinity}, Method -> "AlternatingSigns", AccuracyGoal -> 2^6, PrecisionGoal -> 2^6, WorkingPrecision -> 2^7], 10, 2^7][[1]] (* Robert G. Wilson v, Jul 11 2013 *)
-
PARI
sumalt(k=0,(-1)^k*zeta(k+1/2)/(2*k+1)) \\ M. F. Hasler, Mar 31 2022
Formula
Sum_{x=1..n-1} arctan(1/sqrt(x)) = 2*sqrt(n) + K + o(1). [Corrected by M. F. Hasler, Mar 31 2022]
Equals Sum_{k>=0} (-1)^k*zeta(k+1/2)/(2*k+1). - Robert B Fowler, Oct 23 2022