cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: David Brink

David Brink's wiki page.

David Brink has authored 15 sequences. Here are the ten most recent ones:

A260659 Denominators of a BBP-like formula for 4*Pi/sqrt(27).

Original entry on oeis.org

2, 80, 3584, 1760, 745472, 4456448, 99614720, 265289728, 10905190400, 54492397568, 1065151889408, 1277752770560, 96619584290816, 450799767388160, 8321103999008768, 19017153114013696, 689613692941107200, 3102980143258271744, 55484347409204510720, 30822635849723674624
Offset: 0

Author

David Brink, Nov 13 2015

Keywords

Comments

4*Pi/sqrt(27) = Sum_{n >= 0} (-1/8)^n*(2/(3*n+1)+1/(3*n+2)).

Crossrefs

Cf. A073010, A260658 (numerators).

Programs

  • Magma
    [Denominator((-1/8)^n*(2/(3*n+1)+1/(3*n+2))): n in [0..60]]; // Vincenzo Librandi, Nov 20 2015
  • Mathematica
    A260659[n_] := Denominator[(-1/8)^n*(2/(3*n + 1) + 1/(3*n + 2))];
    Array[A260659, 25, 0] (* Paolo Xausa, Jun 19 2024 *)
  • PARI
    a(n) = denominator((-1/8)^n*(2/(3*n+1)+1/(3*n+2))); \\ Michel Marcus, Nov 15 2015
    

Formula

a(n) = denominator((-1/8)^n*(2/(3*n+1)+1/(3*n+2))).

Extensions

More terms from Michel Marcus, Nov 15 2015

A260658 Numerators of a BBP-like formula for 4*Pi/sqrt(27).

Original entry on oeis.org

5, -7, 23, -1, 41, -25, 59, -17, 77, -43, 95, -13, 113, -61, 131, -35, 149, -79, 167, -11, 185, -97, 203, -53, 221, -115, 239, -31, 257, -133, 275, -71, 293, -151, 311, -5, 329, -169, 347, -89, 365, -187, 383, -49, 401, -205, 419, -107, 437, -223, 455, -29, 473
Offset: 0

Author

David Brink, Nov 13 2015

Keywords

Comments

4*Pi/sqrt(27) = Sum_{n >= 0} (-1/8)^n*(2/(3*n+1)+1/(3*n+2)).
The reduced Collatz function R applied to the numbers 6n+3: a(n) = R(6n+3), where R(k) = (3k+1)/2^r, with r as large as possible, yields an unsigned version of this sequence. - Jonas Kaiser, Jun 17 2024

Crossrefs

Cf. A073010, A260659 (denominators).

Programs

  • Magma
    [Numerator((-1/8)^n*(2/(3*n+1)+1/(3*n+2))): n in [0..60]]; // Vincenzo Librandi, Nov 20 2015
  • Mathematica
    A260658[n_] := Numerator[(-1/8)^n*(2/(3*n + 1) + 1/(3*n + 2))];
    Array[A260658, 100, 0] (* Paolo Xausa, Jun 19 2024 *)
  • PARI
    a(n) = numerator((-1/8)^n*(2/(3*n+1) + 1/(3*n+2))); \\ Michel Marcus, Nov 15 2015
    

Formula

a(n) = numerator((-1/8)^n*(2/(3*n+1)+1/(3*n+2))).

Extensions

More terms from Michel Marcus, Nov 15 2015

A234014 Decimal expansion of Sum_{x>=2} 1/((x - 1) sqrt(x)) = Sum_{k>=1} (zeta(k+1/2) - 1).

Original entry on oeis.org

2, 1, 8, 4, 0, 0, 9, 4, 7, 0, 2, 6, 7, 8, 5, 1, 9, 5, 2, 8, 9, 4, 7, 3, 4, 1, 5, 7, 8, 5, 2, 9, 4, 9, 0, 7, 0, 4, 4, 3, 9, 0, 8, 4, 0, 6, 2, 6, 3, 2, 2, 9, 4, 2, 0, 2, 0, 0, 2, 5, 1, 2, 0, 7, 9, 2, 8, 3, 5, 4, 9, 0, 3, 1, 1, 2, 7, 4, 0, 2, 9, 5, 3, 9, 0, 6, 9, 7, 4, 1, 8, 4, 6, 1, 3, 4, 1, 6, 1, 9, 7, 2, 3, 0, 7
Offset: 1

Author

David Brink and Robert G. Wilson v, Dec 18 2013

Keywords

Examples

			2.184009470267851952894734157852949070443908406263229420200251207928354...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sum[ Zeta[k + 1/2] - 1, {k, 1, 355}], 10, 111][[1]]
  • PARI
    sum(k=1,340,zeta(k+1/2)-1)

A234015 K' (K being A105459) = Sum_{k>=0} (Zeta(k+1/2)-1)/(2k+1), negated.

Original entry on oeis.org

1, 8, 2, 6, 5, 0, 7, 8, 1, 0, 8, 5, 8, 4, 7, 8, 5, 5, 8, 8, 1, 5, 7, 6, 5, 4, 0, 6, 1, 3, 0, 3, 2, 1, 9, 7, 3, 0, 9, 9, 4, 9, 1, 4, 8, 4, 9, 4, 3, 4, 9, 0, 6, 6, 8, 3, 2, 2, 9, 0, 1, 3, 6, 3, 7, 7, 6, 4, 9, 9, 2, 7, 1, 8, 3, 8, 7, 3, 5, 8, 4, 6, 4, 7, 9, 7, 3, 1, 3, 6, 2, 1, 5, 8, 3, 2, 8, 9, 9, 4, 2, 0, 4, 7, 1
Offset: 1

Author

David Brink and Robert G. Wilson v, Dec 18 2013

Keywords

Examples

			1.8265078108584785588157654061303219730994914849434906683229013637764992...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sum[ (Zeta[k + 1/2] - 1)/(2 k + 1), {k, 0, 370}], 10,  111][[1]]
  • PARI
    sum(k=0,340,(zeta(k+1/2)-1)/(2*k+1))

A182009 a(n) = ceiling(sqrt(2n*log(2))+(3-2*log(2))/6).

Original entry on oeis.org

2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1

Author

David Brink, Apr 06 2012

Keywords

Comments

This sequence approximates the sequence of solutions to the Birthday Problem, A033810. The two sequences agree for almost all n, i.e., on a set of integers n with density 1.

Crossrefs

Approximates A033810.

Programs

  • Maple
    seq(ceil((2*n*log(2))^(1/2) + (3-2*log(2))/6), n=1..1000); # Robert Israel, Aug 23 2015
  • Mathematica
    Table[Ceiling[Sqrt[2 n Log[2] + (3 - 2 Log[2])/6]], {n, 82}] (* Michael De Vlieger, Aug 24 2015 *)
  • PARI
    a(n) = { ceil((2*n*log(2))^(1/2) + (3-2*log(2))/6) };
    apply(n->a(n), vector(84, i, i))  \\ Gheorghe Coserea, Aug 23 2015

A182008 a(n) = ceiling(sqrt(2*n*log(2))).

Original entry on oeis.org

2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1

Author

David Brink, Apr 06 2012

Keywords

Comments

This sequence approximates the sequence of solutions to the Birthday Problem, A033810. The two sequences agree on a set of integers n with density (3+2 log 2)/6 = 0.731...

Crossrefs

Approximates A033810.

Programs

  • Magma
    [Ceiling(Sqrt(2*n*Log(2))): n in [1..100]]; // Vincenzo Librandi, Aug 23 2015
    
  • Mathematica
    Table[Ceiling[Sqrt[2 n Log[2]]], {n, 100}] (* Vincenzo Librandi, Aug 23 2015 *)
  • PARI
    a(n) = { ceil(sqrt(2*n*log(2))) };
    apply(n->a(n), vector(88, i, i))  \\ Gheorghe Coserea, Aug 23 2015

A185051 Continued fraction expansion of Hlawka's Schneckenkonstante K = -2.157782...

Original entry on oeis.org

-3, 1, 5, 2, 1, 24, 9, 2, 2, 1, 1, 6, 8, 11, 2, 44, 1, 5, 3, 424, 1, 5, 39, 2, 1, 1, 2, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 7, 4, 2, 1, 1, 15, 2, 3, 3, 3, 2, 1, 45, 15, 10, 16, 3, 1, 1, 1, 2, 2, 1, 1, 6, 2, 1, 2, 3, 2, 14, 3, 5, 1, 2, 1, 19, 1, 4, 16, 5, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 3, 1, 2, 1, 16, 65, 2, 3, 3, 1, 5, 3, 1, 11, 2, 1, 3, 1, 1, 2, 5, 2, 11, 1, 2, 2, 1, 10, 1, 1, 2
Offset: 0

Author

David Brink, Jan 22 2012

Keywords

References

  • P. J. Davis, Spirals from Theodorus to Chaos, A K Peters, Wellesley, MA, 1993.

Crossrefs

Cf. A105459 for decimal expansion.

A105459 Decimal expansion of Hlawka's Schneckenkonstante K = -2.157782... (negated).

Original entry on oeis.org

2, 1, 5, 7, 7, 8, 2, 9, 9, 6, 6, 5, 9, 4, 4, 6, 2, 2, 0, 9, 2, 9, 1, 4, 2, 7, 8, 6, 8, 2, 9, 5, 7, 7, 7, 2, 3, 5, 0, 4, 1, 3, 9, 5, 9, 8, 6, 0, 7, 5, 6, 2, 4, 5, 5, 1, 5, 4, 8, 9, 5, 5, 5, 0, 8, 5, 8, 8, 6, 9, 6, 4, 6, 7, 9, 6, 6, 0, 6, 4, 8, 1, 4, 9, 6, 6, 9, 4, 2, 9, 8, 9, 4, 6, 3, 9, 6, 0, 8, 9, 8
Offset: 1

Author

David Brink, Jun 13 2011

Keywords

Examples

			-2.157782996659446220929142786829577723504139598607562455...
		

References

  • P. J. Davis, Spirals from Theodorus to Chaos, A K Peters, Wellesley, MA, 1993.

Crossrefs

Cf. A185051 for continued fraction expansion.

Programs

  • Maple
    evalf(Sum((-1)^k*Zeta(k + 1/2)/(2*k+1), k=0..infinity), 120); # Vaclav Kotesovec, Mar 01 2016
  • Mathematica
    RealDigits[ NSum[(-1)^k*Zeta[k + 1/2]/(2 k + 1), {k, 0, Infinity}, Method -> "AlternatingSigns", AccuracyGoal -> 2^6, PrecisionGoal -> 2^6, WorkingPrecision -> 2^7], 10, 2^7][[1]] (* Robert G. Wilson v, Jul 11 2013 *)
  • PARI
    sumalt(k=0,(-1)^k*zeta(k+1/2)/(2*k+1)) \\ M. F. Hasler, Mar 31 2022

Formula

Sum_{x=1..n-1} arctan(1/sqrt(x)) = 2*sqrt(n) + K + o(1). [Corrected by M. F. Hasler, Mar 31 2022]
Equals Sum_{k>=0} (-1)^k*zeta(k+1/2)/(2*k+1). - Robert B Fowler, Oct 23 2022

A159456 Discriminant of the 47 imaginary, bicyclic, biquadratic fields with class number 1.

Original entry on oeis.org

144, 225, 256, 400, 441, 576, 576, 784, 1089, 1225, 1600, 1936, 2601, 2704, 3136, 3249, 5776, 5929, 7744, 7744, 8281, 15129, 16641, 17689, 21904, 23104, 29584, 34969, 40401, 43681, 53824, 71289, 71824, 90601, 118336, 182329, 239121, 287296
Offset: 1

Author

David Brink, Apr 12 2009

Keywords

References

  • E. Brown and C. J. Parry, The imaginary bicyclic biquadratic fields with class number 1, J. Reine Angew. Math. 266 (1974), 118-120.

A161891 Primes p with the property that every non-solvable transitive permutation group of degree p is alternating or symmetric.

Original entry on oeis.org

5, 19, 29, 37, 41, 43, 47, 53, 59, 61, 67, 71, 79, 83, 89, 97
Offset: 1

Author

David Brink, Jun 21 2009

Keywords

Comments

Wielandt mentions only p=5, 19, 47, 59. The rest follows from the classification of finite simple groups.

References

  • Wielandt, Finite Permutation Groups, p. 29.
  • Dixon, Mortimer, Permutation Groups, Springer, 1996, p. 99.