A260659 Denominators of a BBP-like formula for 4*Pi/sqrt(27).
2, 80, 3584, 1760, 745472, 4456448, 99614720, 265289728, 10905190400, 54492397568, 1065151889408, 1277752770560, 96619584290816, 450799767388160, 8321103999008768, 19017153114013696, 689613692941107200, 3102980143258271744, 55484347409204510720, 30822635849723674624
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
- David H. Bailey, A Compendium of BBP-Type Formulas for Mathematical Constants.
- David Brink, Nilakantha's accelerated series for pi, Acta Arith. 171 (2015), 293-308.
Programs
-
Magma
[Denominator((-1/8)^n*(2/(3*n+1)+1/(3*n+2))): n in [0..60]]; // Vincenzo Librandi, Nov 20 2015
-
Mathematica
A260659[n_] := Denominator[(-1/8)^n*(2/(3*n + 1) + 1/(3*n + 2))]; Array[A260659, 25, 0] (* Paolo Xausa, Jun 19 2024 *)
-
PARI
a(n) = denominator((-1/8)^n*(2/(3*n+1)+1/(3*n+2))); \\ Michel Marcus, Nov 15 2015
Formula
a(n) = denominator((-1/8)^n*(2/(3*n+1)+1/(3*n+2))).
Extensions
More terms from Michel Marcus, Nov 15 2015
Comments