cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A260659 Denominators of a BBP-like formula for 4*Pi/sqrt(27).

Original entry on oeis.org

2, 80, 3584, 1760, 745472, 4456448, 99614720, 265289728, 10905190400, 54492397568, 1065151889408, 1277752770560, 96619584290816, 450799767388160, 8321103999008768, 19017153114013696, 689613692941107200, 3102980143258271744, 55484347409204510720, 30822635849723674624
Offset: 0

Views

Author

David Brink, Nov 13 2015

Keywords

Comments

4*Pi/sqrt(27) = Sum_{n >= 0} (-1/8)^n*(2/(3*n+1)+1/(3*n+2)).

Crossrefs

Cf. A073010, A260658 (numerators).

Programs

  • Magma
    [Denominator((-1/8)^n*(2/(3*n+1)+1/(3*n+2))): n in [0..60]]; // Vincenzo Librandi, Nov 20 2015
  • Mathematica
    A260659[n_] := Denominator[(-1/8)^n*(2/(3*n + 1) + 1/(3*n + 2))];
    Array[A260659, 25, 0] (* Paolo Xausa, Jun 19 2024 *)
  • PARI
    a(n) = denominator((-1/8)^n*(2/(3*n+1)+1/(3*n+2))); \\ Michel Marcus, Nov 15 2015
    

Formula

a(n) = denominator((-1/8)^n*(2/(3*n+1)+1/(3*n+2))).

Extensions

More terms from Michel Marcus, Nov 15 2015

A373730 Reduced Collatz function R applied to the numbers 6n+1: a(n) = R(6n+1), where R(k) = (3k+1)/2^r, with r as large as possible.

Original entry on oeis.org

1, 11, 5, 29, 19, 47, 7, 65, 37, 83, 23, 101, 55, 119, 1, 137, 73, 155, 41, 173, 91, 191, 25, 209, 109, 227, 59, 245, 127, 263, 17, 281, 145, 299, 77, 317, 163, 335, 43, 353, 181, 371, 95, 389, 199, 407, 13, 425, 217, 443, 113, 461, 235, 479, 61, 497, 253, 515
Offset: 0

Views

Author

Jonas Kaiser, Jun 17 2024

Keywords

Crossrefs

Programs

  • Mathematica
    A373730[n_] := #/2^IntegerExponent[#, 2] & [9*n + 2];
    Array[A373730, 100, 0] (* Paolo Xausa, Aug 19 2024 *)
  • PARI
    a(n) = n=9*n+2; n>>valuation(n,2);

Formula

a(n) = A000265(A017185(n)).

A373864 Reduced Collatz function R applied to the numbers 6n+5: a(n) = R(6n+5), where R(k) = (3k+1)/2^r, with r as large as possible.

Original entry on oeis.org

1, 17, 13, 35, 11, 53, 31, 71, 5, 89, 49, 107, 29, 125, 67, 143, 19, 161, 85, 179, 47, 197, 103, 215, 7, 233, 121, 251, 65, 269, 139, 287, 37, 305, 157, 323, 83, 341, 175, 359, 23, 377, 193, 395, 101, 413, 211, 431, 55, 449, 229, 467, 119
Offset: 0

Views

Author

Jonas Kaiser, Jun 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    A373864[n_] := #/2^IntegerExponent[#, 2] & [9*n + 8];
    Array[A373864, 100, 0] (* Paolo Xausa, Aug 19 2024 *)
  • PARI
    a(n) = n=9*n+8; n>>valuation(n,2);

Formula

a(n) = A000265(A017257(n)).
Showing 1-3 of 3 results.