cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105475 Triangle read by rows: T(n,k) is number of compositions of n into k parts when each even part can be of two kinds.

Original entry on oeis.org

1, 2, 1, 1, 4, 1, 2, 6, 6, 1, 1, 8, 15, 8, 1, 2, 11, 26, 28, 10, 1, 1, 12, 42, 64, 45, 12, 1, 2, 16, 60, 122, 130, 66, 14, 1, 1, 16, 82, 208, 295, 232, 91, 16, 1, 2, 21, 108, 324, 582, 621, 378, 120, 18, 1, 1, 20, 135, 480, 1035, 1404, 1176, 576, 153, 20, 1, 2, 26, 170, 675
Offset: 1

Views

Author

Emeric Deutsch, Apr 09 2005

Keywords

Comments

Riordan array ((1+2x)/(1-x^2),x(1+2x)/(1-x^2)). Factorizes as ((1+2x)/(1-x^2),x)*(1,x(1+2x)/(1-x^2)). Row sums A105476 form an eigensequence for ((1+2x)/(1-x^2),x). - Paul Barry, Feb 10 2011
Triangle T(n,k), 1<=k<=n, given by (0, 2, -3/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 18 2012
Also the convolution triangle of A000034. - Peter Luschny, Oct 08 2022

Examples

			T(4,2) = 6 because we have (1,3), (3,1), (2,2), (2,2'), (2',2) and (2',2').
Triangle begins:
1;
2, 1;
1, 4,  1;
2, 6,  6, 1;
1, 8, 15, 8, 1;
Triangle (0, 2, -3/2, -1/2, 0, 0, 0...) DELTA (1, 0, 0, 0, 0, ...) begins:
1
0, 1
0, 2, 1
0, 1, 4, 1
0, 2, 6, 6, 1
0, 1, 8, 15, 8, 1
0, 2, 11, 26, 28, 10, 1
0, 1, 12, 42, 64, 45, 12, 1
		

Crossrefs

Row sums yield A105476.

Programs

  • Maple
    G:=t*z*(1+2*z)/(1-t*z-z^2-2*t*z^2): Gser:=simplify(series(G,z=0,14)): for n from 1 to 12 do P[n]:=sort(coeff(Gser,z^n)) od: for n from 1 to 12 do seq(coeff(P[n],t^k),k=1..n) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, 1,
          expand(add((2-irem(i, 2))*b(n-i)*x, i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, k), k=1..n))(b(n)):
    seq(T(n), n=1..14);  # Alois P. Heinz, Oct 16 2013
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, n -> [1, 2][irem(n-1, 2) + 1]); # Peter Luschny, Oct 08 2022
  • Mathematica
    max = 14; g = t*z*(1 + 2*z)/(1 - t*z - z^2 - 2*t*z^2); gser = Series[g, {z, 0, max}]; coes = CoefficientList[gser, {z, t}]; Table[ Table[ coes[[n, k]], {k, 2, n}], {n, 2, max}] // Flatten (* Jean-François Alcover, Oct 02 2013, after Maple *)