A105475 Triangle read by rows: T(n,k) is number of compositions of n into k parts when each even part can be of two kinds.
1, 2, 1, 1, 4, 1, 2, 6, 6, 1, 1, 8, 15, 8, 1, 2, 11, 26, 28, 10, 1, 1, 12, 42, 64, 45, 12, 1, 2, 16, 60, 122, 130, 66, 14, 1, 1, 16, 82, 208, 295, 232, 91, 16, 1, 2, 21, 108, 324, 582, 621, 378, 120, 18, 1, 1, 20, 135, 480, 1035, 1404, 1176, 576, 153, 20, 1, 2, 26, 170, 675
Offset: 1
Examples
T(4,2) = 6 because we have (1,3), (3,1), (2,2), (2,2'), (2',2) and (2',2'). Triangle begins: 1; 2, 1; 1, 4, 1; 2, 6, 6, 1; 1, 8, 15, 8, 1; Triangle (0, 2, -3/2, -1/2, 0, 0, 0...) DELTA (1, 0, 0, 0, 0, ...) begins: 1 0, 1 0, 2, 1 0, 1, 4, 1 0, 2, 6, 6, 1 0, 1, 8, 15, 8, 1 0, 2, 11, 26, 28, 10, 1 0, 1, 12, 42, 64, 45, 12, 1
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Maple
G:=t*z*(1+2*z)/(1-t*z-z^2-2*t*z^2): Gser:=simplify(series(G,z=0,14)): for n from 1 to 12 do P[n]:=sort(coeff(Gser,z^n)) od: for n from 1 to 12 do seq(coeff(P[n],t^k),k=1..n) od; # yields sequence in triangular form # second Maple program: b:= proc(n) option remember; `if`(n=0, 1, expand(add((2-irem(i, 2))*b(n-i)*x, i=1..n))) end: T:= n-> (p-> seq(coeff(p, x, k), k=1..n))(b(n)): seq(T(n), n=1..14); # Alois P. Heinz, Oct 16 2013 # Uses function PMatrix from A357368. Adds a row above and a column to the left. PMatrix(10, n -> [1, 2][irem(n-1, 2) + 1]); # Peter Luschny, Oct 08 2022
-
Mathematica
max = 14; g = t*z*(1 + 2*z)/(1 - t*z - z^2 - 2*t*z^2); gser = Series[g, {z, 0, max}]; coes = CoefficientList[gser, {z, t}]; Table[ Table[ coes[[n, k]], {k, 2, n}], {n, 2, max}] // Flatten (* Jean-François Alcover, Oct 02 2013, after Maple *)
Comments