A105487 Number of partitions of {1...n} containing 5 strings of 3 consecutive integers, where each string is counted within a block and a string of more than 3 consecutive integers are counted three at a time.
1, 2, 12, 56, 297, 1632, 9531, 58634, 379371, 2574254, 18276457, 135463074, 1046041114, 8399533370, 70013963418, 604840440328, 5407301690915, 49958478263502, 476403955991034, 4683463406478004, 47414166201239781, 493803423334040824, 5285548108715948453
Offset: 7
Keywords
Examples
a(8) = 2 because the partitions of {1,...,8} with 5 strings of 3 consecutive integers are 1234567/8, 1/2345678.
Links
- Augustine O. Munagi, Set Partitions with Successions and Separations, Int. J. Math and Math. Sc., 2005:3 (2005), 451-463.
Programs
-
Maple
c := proc(n,k,r) option remember ; local j ; if r =0 then add(binomial(n-j,j)*combinat[stirling2](n-j-1,k-1),j=0..floor(n/2)) ; else if r <0 or r > n-k-1 then RETURN(0) fi ; if n <1 then RETURN(0) fi ; if k <1 then RETURN(0) fi ; RETURN( c(n-1,k-1,r)+(k-1)*c(n-1,k,r)+c(n-2,k-1,r)+(k-1)*c(n-2,k,r) +c(n-1,k,r-1)-c(n-2,k-1,r-1)-(k-1)*c(n-2,k,r-1) ) ; fi ; end: A105487 := proc(n) local k ; add(c(n,k,5),k=1..n) ; end: for n from 7 to 30 do printf("%d, ",A105487(n)) ; od ; # R. J. Mathar, Feb 20 2007
-
Mathematica
S2[_, -1] = 0; S2[n_, k_] = StirlingS2[n, k]; c[n_, k_, r_] := c[n, k, r] = Which[ r == 0, Sum[Binomial[n - j, j]*S2[n - j - 1, k - 1], {j, 0, Floor[n/2]}], r < 0 || r > n - k - 1, 0, n < 1, 0, k < 1, 0, True, c[n - 1, k - 1, r] + (k - 1)*c[n - 1, k, r] + c[n - 2, k - 1, r] + (k - 1)*c[n - 2, k, r] + c[n - 1, k, r - 1] - c[n - 2, k - 1, r - 1] - (k - 1)*c[n - 2, k, r - 1]]; A105487[n_] := Sum[c[n, k, 5], {k, 1, n}]; Table[A105487[n], {n, 7, 30}] (* Jean-François Alcover, May 10 2023, after R. J. Mathar *)
Formula
a(n) = Sum_{k=1..n} c(n, k, 5), where c(n, k, 5) is the case r=5 of c(n, k, r) given by c(n, k, r)=c(n-1, k-1, r)+(k-1)c(n-1, k, r)+c(n-2, k-1, r)+(k-1)c(n-2, k, r)+c(n-1, k, r-1)-c(n-2, k-1, r-1)-(k-1)c(n-2, k, r-1), r=0, 1, .., n-k-1, k=1, 2, .., n-2r, c(n, k, 0) = Sum_{j= 0..floor(n/2)} binomial(n-j, j)*S2(n-j-1, k-1).
Extensions
More terms from R. J. Mathar, Feb 20 2007