A105491 Number of partitions of {1...n} containing 5 detached pairs of consecutive integers, i.e., partitions in which only 1- or 2-strings of consecutive integers can appear in a block and there are exactly five 2-strings.
15, 312, 4263, 49112, 521640, 5329044, 53580450, 537427440, 5422899339, 55344162874, 573270663966, 6040762924560, 64851119605636, 709986204480672, 7931189102016852, 90430835147203728, 1052534895931584828
Offset: 10
Examples
a(10)=15; the enumerated 15 partitions of {1,...,10} with 5 detached pairs of consecutive integers include (1,2,5,6,9,10)(3,4,7,8) and (1,2,9,10)(3,4,7,8)(5,6).
References
- A. O. Munagi, Set Partitions with Successions and Separations, Int. J. Math and Math. Sc. 2005, no. 3 (2005), 451-463.
Links
- A. O. Munagi, Set Partitions with Successions and Separations,IJMMS 2005:3 (2005),451-463.
Programs
-
Maple
seq(binomial(n-5,5)*combinat[bell](n-6),n=10..30);
Formula
a(n)=binomial(n-5, 5)*Bell(n-6), which is the case r=5 in the general case of r pairs, d(n, r)=binomial(n-r, r)*Bell(n-r-1), which is the case t=2 of the general formula d(n, r, t)=binomial(n-r*(t-1), r)*B(n-r*(t-1)-1).
Comments