A105529 Given a list of ternary numbers, interpret each as a ternary modular Gray code number, then convert to decimal.
0, 1, 2, 4, 5, 3, 8, 6, 7, 13, 14, 12, 17, 15, 16, 9, 10, 11, 26, 24, 25, 18, 19, 20, 22, 23, 21, 40, 41, 39, 44, 42, 43, 36, 37, 38, 53, 51, 52, 45, 46, 47, 49, 50, 48, 27, 28, 29, 31, 32, 30, 35, 33, 34, 80, 78, 79, 72, 73, 74, 76, 77, 75
Offset: 0
Examples
a(9) = 13 since Ternary 100 (9 decimal) interpreted as Ternary Gray code = 13.
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{v = IntegerDigits[n, 3]}, Do[v[[i]] = Mod[v[[i]]+v[[i-1]], 3], {i, 2, Length[v]}]; FromDigits[v, 3]]; Table[a[n], {n, 0, 62}] (* Jean-François Alcover, Jun 26 2023, after Kevin Ryde *)
-
PARI
a(n) = my(v=digits(n,3)); for(i=2,#v, v[i]=(v[i]+v[i-1])%3); fromdigits(v,3); \\ Kevin Ryde, May 23 2020
Extensions
More terms from Sean A. Irvine, Feb 09 2012
Comments by Gary W. Adamson moved to A105530 where they better apply. - Kevin Ryde, May 30 2020