cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A105595 Row sums of number triangle A105594.

Original entry on oeis.org

1, 1, 3, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 7, 3, 9, 1, 3, 3, 5, 5, 7, 9, 3, 3, 7, 9, 15, 7, 13, 21, 13, 1, 1, 5, 1, 3, 5, 7, 11, 3, 3, 7, 13, 5, 11, 13, 19, 3, 7, 7, 7, 7, 19, 9, 25, 7, 13, 21, 23, 15, 27, 19, 39, 1, 1, 3, 1, 5, 5, 3, 9, 3, 5, 11, 9, 9, 13, 19, 21, 3, 7, 7, 9, 7, 15, 17, 19, 7, 15, 21
Offset: 0

Views

Author

Paul Barry, Apr 14 2005

Keywords

Comments

Conjecture : all terms are odd.

Crossrefs

Cf. A105596.

Programs

Formula

a(n)=sum{k=0..n, mod(sum{j=0..n, abs(mu(binomial(n, j)))*mod(binomial(j, k), 2)}, 2)}

A105600 Assume the conjectured terms of A105594 are the correct beginnings of the trajectories described in A003508. a(n) is a record length of b(n) iterations to arrive at the collected trajectories. This sequence cites the a(n)'s.

Original entry on oeis.org

1, 5, 9, 16, 25, 43, 91, 105, 427, 463, 484, 4085, 4306, 4413, 5583, 6273, 10172, 18105, 24946, 31686, 31886
Offset: 0

Views

Author

R. K. Guy and Robert G. Wilson v, Apr 15 2005

Keywords

Comments

The trajectory in A003508, etc., is defined as a(1)=n, for n>1, a(n) = a(n-1) + 1 + sum of distinct prime factors of a(n-1) that are < a(n-1).

Crossrefs

Cf. A105593, the b(n)'s are in A105600.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = a[n - 1] + 1 + Plus @@ Select[ Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[ a[n - 1]]], # < a[n - 1] &]; t = Table[ a[n], {n, 1500}]; f[n_] := Module[{b, k = 1}, b[1] = n; b[m_] := b[m] = b[m - 1] + 1 + Plus @@ Select[ Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[ b[m - 1]]], # < b[m - 1] &]; While[ Position[t, b[k]] == {} && k < 1000, k++ ]; If[ k == 1000, t = Select[ Union[ Join[t, Table[ b[i], {i, 2, k}]]], # > n &]; -1, k - 1]]; lst = {{1, 0}}; Do[d = f[n]; If[d > lst[[ -1, 2]], AppendTo[lst, {n, d}]], {n, 60000}]; Transpose[ lst][[1]]

A105601 Assume the conjectured terms of A105594 are the correct beginnings of the trajectories described in A003508. a(n) is a record length of b(n) iterations to arrive at the collected trajectories. This sequence cites the b(n)'s.

Original entry on oeis.org

0, 2, 3, 7, 8, 12, 23, 40, 53, 54, 56, 72, 82, 113, 124, 129, 213, 214, 215, 216, 220
Offset: 0

Views

Author

R. K. Guy and Robert G. Wilson v, Apr 15 2005

Keywords

Comments

The trajectory in A003508, etc., is defined as a(1)=n, for n>1, a(n) = a(n-1) + 1 + sum of distinct prime factors of a(n-1) that are < a(n-1).

Crossrefs

Cf. A105593, the a(n)'s are in A105600.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = a[n - 1] + 1 + Plus @@ Select[ Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[ a[n - 1]]], # < a[n - 1] &]; t = Table[ a[n], {n, 1500}]; f[n_] := Module[{b, k = 1}, b[1] = n; b[m_] := b[m] = b[m - 1] + 1 + Plus @@ Select[ Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[ b[m - 1]]], # < b[m - 1] &]; While[ Position[t, b[k]] == {} && k < 1000, k++ ]; If[ k == 1000, t = Select[ Union[ Join[t, Table[ b[i], {i, 2, k}]]], # > n &]; -1, k - 1]]; lst = {{1, 0}}; Do[d = f[n]; If[d > lst[[ -1, 2]], AppendTo[lst, {n, d}]], {n, 60000}]; Transpose[ lst][[2]]

A105596 a(n) = Sum_{k=0..n} A105595(k)*(-1)^k*A105595(n-k) (interpolated zeros suppressed).

Original entry on oeis.org

1, 5, 13, 17, 25, 25, 33, 21, 9, -15, -23, -3, -11, -31, -47, -35, 5, -47, -83, -75, -211, -295, -267, -267, -99, -107, -159, -415, -347, -679, -279, -583, -395, -839, -1031, -1291, -1139, -1883, -1519, -1643, -855, -1591, -1571, -1851, -1195, -2419, -1923, -2179, -891, -1919, -2535
Offset: 0

Views

Author

Paul Barry, Apr 14 2005

Keywords

Comments

Conjecture : a(2n)=1 mod 4 for all n, a(2n+1)=0 for all n.

Crossrefs

Programs

A105597 Central numbers in a Moebius-binomial triangle.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Paul Barry, Apr 14 2005

Keywords

Comments

Central numbers in A105595.
There seems to be a typo in above comment, maybe A105594 was intended? - Antti Karttunen, Aug 27 2017
Partial sums are A105598.

Programs

  • Mathematica
    a[n_]:= Binomial[Abs[MoebiusMu[n]],Abs[MoebiusMu[Floor[n/2]]]];Table[a[n],{n,0,100}] (* James C. McMahon, Jan 23 2024 *)
  • PARI
    A105597(n) = if(n<2,1,binomial(abs(moebius(n)), abs(moebius(n\2)))); \\ Antti Karttunen, Aug 27 2017

Formula

a(n) = binomial(abs(mu(n)), abs(mu(floor(n/2)))).
Showing 1-5 of 5 results.