cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105623 Matrix square-root of triangle A105615.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 26, 10, 3, 1, 226, 74, 19, 4, 1, 2426, 706, 167, 31, 5, 1, 30826, 8162, 1831, 320, 46, 6, 1, 451586, 110410, 23843, 4021, 548, 64, 7, 1, 7489426, 1708394, 358339, 59024, 7801, 866, 85, 8, 1, 138722426, 29752066, 6097607, 987763, 127985
Offset: 0

Views

Author

Paul D. Hanna, Apr 16 2005

Keywords

Comments

Column 0 equals A105616 (=column 1 of A105615) shift 1 place right. Column 1 is A000698 (related to double factorials) offset 1.

Examples

			Triangle begins:
1;
1,1;
4,2,1;
26,10,3,1;
226,74,19,4,1;
2426,706,167,31,5,1;
30826,8162,1831,320,46,6,1;
451586,110410,23843,4021,548,64,7,1;
7489426,1708394,358339,59024,7801,866,85,8,1;
138722426,29752066,6097607,987763,127985,13801,1289,109,9,1; ...
		

Crossrefs

Cf. A105615, A105616 (column 0), A000698 (column 1), A105620 (matrix inverse).

Programs

  • PARI
    T(n,k)=local(R,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))^-1); R=(M+M^0)/2;for(i=1,floor(2*log(n+2)),R=(R+M*R^(-1))/2); return(if(n