cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105634 Expansion of Sum_{k>0} Kronecker(k,7)*x^k*(1 + x^k)/(1 - x^k)^3.

Original entry on oeis.org

1, 5, 8, 21, 24, 40, 49, 85, 73, 120, 122, 168, 168, 245, 192, 341, 288, 365, 360, 504, 392, 610, 530, 680, 601, 840, 656, 1029, 842, 960, 960, 1365, 976, 1440, 1176, 1533, 1370, 1800, 1344, 2040, 1680, 1960, 1850, 2562, 1752, 2650, 2208, 2728, 2401, 3005
Offset: 1

Views

Author

Michael Somos, Apr 16 2005, Mar 31 2008

Keywords

Examples

			q + 5*q^2 + 8*q^3 + 21*q^4 + 24*q^5 + 40*q^6 + 49*q^7 + 85*q^8 + 73*q^9 + ...
		

References

  • A. Balog, H. Darmon and K. Ono, Congruence for Fourier coefficients of half-integral weight modular forms and special values of L-functions, pp. 105-128 of Analytic number theory, Vol. 1, Birkhäuser, Boston, 1996, see page 107.
  • Bruce Berndt, Commentary on Ramanujan's Papers, pp. 357-426 of Collected Papers of Srinivasa Ramanujan, Ed. G. H. Hardy et al., AMS Chelsea, 2000. See page 372 (4).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[MemberQ[{1, 2, 4}, Mod[p, 7]], (p^(2*e+2)-1)/(p^2-1), (p^(2*e+2)+(-1)^e)/(p^2+1)]; f[7, e_] := 7^(2*e); a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 04 2023 *)
  • PARI
    {a(n)=local(A,p,e); if(n<2, n==1, A=factor(n); prod(k=1,matsize(A)[1], if(p=A[k,1], e=A[k,2]; if(p==7, p^(2*e), if(kronecker(p,7)==1, (p^(2*e+2)-1)/(p^2-1), (p^(2*e+2)+(-1)^e)/(p^2+1)))))) }
    
  • PARI
    {a(n)=local(A,B); if(n<1, 0, n--; A=x*O(x^n); polcoeff( if(B=eta(x^7+A), A=eta(x+A); (A*B)^3+8*x*B^7/A), n))}
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, d^2 * kronecker(-7, n / d)))}

Formula

Multiplicative with a(p^e) = p^(2e) if p = 7; (p^(2e+2)-1)/(p^2-1) if p == 1, 2, 4 (mod 7); (p^(2e+2)+(-1)^e)/(p^2+1) if p == 3, 5, 6 (mod 7).
G.f.: Sum_{k>0} Kronecker(k, 7)*x^k*(1+x^k)/(1-x^k)^3.
a(n) = A002656(n) + 8*A053724(n-2).
a(7n) = 49a(n).
G.f. is a period 1 Fourier series which satisfies f(-1 / (7 t)) = 7^(-1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is g.f. for A138809.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 32*Pi^3/(343*sqrt(7)) = 1.093343069... (A327135). - Amiram Eldar, Nov 16 2023