cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105669 A "fractal" transform of the Fibonacci numbers F(n)=A000045(n): a(1)=1, then for n>1 if F(n) < k < F(n+1) we have a(k) = F(n+1)-a(k-F(n)) and when k = F(n+1) we force a(F(n+1)) = F(n+1) + (1+(-1)^n)*F(n).

Original entry on oeis.org

1, 2, 2, 4, 7, 7, 6, 6, 12, 11, 11, 9, 20, 20, 19, 19, 17, 14, 14, 15, 15, 33, 32, 32, 30, 27, 27, 28, 28, 22, 23, 23, 25, 54, 54, 53, 53, 51, 48, 48, 49, 49, 43, 44, 44, 46, 35, 35, 36, 36, 38, 41, 41, 40, 40, 88, 87, 87, 85, 82, 82, 83, 83, 77, 78, 78, 80, 69, 69, 70, 70, 72
Offset: 1

Views

Author

Benoit Cloitre, May 03 2005

Keywords

Comments

Let b denote the sequence of n such that a(n)=a(n+1), then b(n)=floor(tau^2*n) where tau=(1+sqrt(5))/2.
Missing numbers are the nearest integer to tau^2*n, n>=0 (cf. A004937).
#{k>0 : a(k) = k} = infinity.
This kind of "fractal" transform can be applied to any increasing monotonic sequence giving true fractal properties for sequences = (m^n)_{n>0} with m integer >=2, specially when m is odd (cf. A093347, A093348).

Examples

			For 5 = F(5) < k <= F(6) = 8 we get a(6) = 8-a(6-5) = 8-a(1) = 7.
a(7) = 8-a(7-5) = 8-a(2) = 6.
a(8) = 8-a(8-5) = 8-a(3) = 6.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[n <= 1, 1, Fibonacci[(k = Floor[Log[Sqrt[5]*n]/Log[GoldenRatio]]) + 1] - a[n - Fibonacci[k]]]; Array[a, 100] (* Amiram Eldar, Jun 17 2022 *)
  • PARI
    f=(1+sqrt(5))/2; a(n)=if(n<2,1,fibonacci(floor(log(sqrt(5)*n)/log(f))+1)-a(n-fibonacci(floor(log(sqrt(5)*n)/log(f)))))

Formula

F(2n) = F(2n+1) - F(n+1)^2 + F(n)*F(n-1) for n>0.
a(F(2n-1)) = F(2n)-1 for n>1.
1/tau < a(n)/n < tau.