A105671 a(2n) = Lucas(2n+3)^2, a(2n+1) = Lucas(2n+1)^2.
16, 1, 121, 16, 841, 121, 5776, 841, 39601, 5776, 271441, 39601, 1860496, 271441, 12752041, 1860496, 87403801, 12752041, 599074576, 87403801, 4106118241, 599074576, 28143753121, 4106118241, 192900153616, 28143753121
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,7,-7,-1,1).
Crossrefs
Cf. A081071.
Programs
-
Mathematica
a[n_?EvenQ] := LucasL[n+3]^2; a[n_?OddQ] := LucasL[n]^2; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Sep 28 2011 *)
-
PARI
Vec((16 - 15*x + 8*x^2 + x^4) / ((1 - x)*(1 - 3*x + x^2)*(1 + 3*x + x^2)) + O(x^40)) \\ Colin Barker, May 01 2019
Formula
G.f.: (-x^4-8x^2+15x-16)/((x-1)(x^4-7x^2+1)).
a(n) = a(n-1) + 7*a(n-2) - 7*a(n-3) - a(n-4) + a(n-5) for n>4. - Colin Barker, May 01 2019
Comments