A105672 a(1)=1, then bracketing n with powers of 3 as f(t)=3^t for f(t) < n <= f(t+1), a(n) = f(t+1) - a(n-f(t)).
1, 2, 1, 8, 7, 8, 1, 2, 1, 26, 25, 26, 19, 20, 19, 26, 25, 26, 1, 2, 1, 8, 7, 8, 1, 2, 1, 80, 79, 80, 73, 74, 73, 80, 79, 80, 55, 56, 55, 62, 61, 62, 55, 56, 55, 80, 79, 80, 73, 74, 73, 80, 79, 80, 1, 2, 1, 8, 7, 8, 1, 2, 1, 26, 25, 26, 19, 20, 19, 26, 25, 26, 1, 2, 1, 8, 7, 8, 1, 2, 1
Offset: 1
Keywords
Programs
-
Maple
A105672 := proc(n) option remember; if n = 1 then 1; else fn1 := A064235(n) ; fn := fn1/3 ; fn1-procname(n-fn) ; end if; end proc: seq(A105672(n),n=1..80) ; # R. J. Mathar, Nov 06 2011
-
Mathematica
A064235[n_] := 3^Ceiling[Log[3, n]]; a[1] = 1; a[n_] := a[n] = A064235[n] - a[n - A064235[n]/3]; Table[a[n], {n, 1, 81}] (* Jean-François Alcover, Jul 09 2013, after R. J. Mathar *)
-
PARI
b(n,m)=if(n<2,1,m*m^floor(log(n-1)/log(m))-b(n-m^floor(log(n-1)/log(m)),m))
Formula
a(n+1) = 1 + Sum_{k=1..n} (-1)^k*(2-3*3^valuation(k, 3)).