A105701 Smallest m such that 0 is at the n-th position of the decimal representation of the m-th Fibonacci number.
0, 32, 25, 21, 34, 38, 61, 40, 60, 51, 61, 62, 64, 71, 88, 84, 88, 108, 103, 103, 112, 107, 129, 118, 138, 129, 131, 138, 148, 152, 155, 164, 166, 170, 176, 174, 181, 185, 204, 196, 198, 206, 212, 217, 217, 258, 240, 242, 244, 241, 248, 252, 259, 277, 265, 273
Offset: 0
Examples
n=3: a(3)=21, A000045(21) = a(3) = 10946 -> 1[0]946; n=4: a(4)=34, A000045(34) = a(4) = 5702887 -> 57[0]2887.
Links
- Robert Israel, Table of n, a(n) for n = 0..5000
- Eric Weisstein's World of Mathematics, Fibonacci Number
Crossrefs
Programs
-
Maple
N:= 100: # for a(0) to a(N) F[0]:= 0: F[1]:= 1: V:= Array(0..N): count:= 1: for m from 2 while count < N do F[m]:= F[m-1]+F[m-2]; L:= convert(F[m], base, 10); M:= select(t -> L[t+1]=0 and V[t]=0, [$0..min(N, nops(L)-1)]); count:= count + nops(M); V[M]:= m; od: V[0]:= 0: convert(V, list); # Robert Israel, Jun 03 2020
Extensions
a(1) corrected by Robert Israel, Jun 03 2020
Comments