A105707 Smallest m such that 7 is at the n-th position of the decimal representation of the m-th Fibonacci number.
14, 14, 20, 22, 25, 34, 42, 47, 44, 49, 66, 66, 65, 68, 96, 81, 87, 89, 92, 101, 116, 145, 111, 116, 129, 153, 132, 135, 167, 159, 159, 156, 159, 168, 175, 176, 178, 183, 217, 198, 199, 202, 221, 223, 249, 223, 226, 235, 266, 243, 245, 250, 258, 265, 266, 269
Offset: 0
Examples
n=3: a(3)=22, A000045(22) = A105710(3) = 17711 -> 1[7]711; n=4: a(4)=25, A000045(25) = A105710(4) = 75025 -> [7]5025.
Links
- Robert Israel, Table of n, a(n) for n = 0..2000
- Eric Weisstein's World of Mathematics, Fibonacci Number
Programs
-
Maple
N:= 100: # for a(0) to a(N) F[0]:= 0: F[1]:= 1: V:= Array(0..N): count:= 0: for m from 2 while count < N+1 do F[m]:= F[m-1]+F[m-2]; L:= convert(F[m],base,10); M:= select(t -> L[t+1]=7 and V[t]=0, [$0..min(N,nops(L)-1)]); count:= count + nops(M); V[M]:= m; od: convert(V,list); # Robert Israel, Jun 01 2020
Comments