A105708 Smallest m such that 8 is at the n-th position of the decimal representation of the m-th Fibonacci number.
6, 11, 28, 23, 38, 30, 49, 50, 46, 60, 54, 83, 71, 81, 73, 78, 90, 90, 99, 97, 126, 114, 113, 135, 121, 146, 136, 145, 140, 145, 154, 157, 170, 164, 178, 186, 180, 190, 188, 203, 200, 211, 207, 215, 221, 246, 235, 231, 242, 249, 247, 272, 255, 269, 267, 290, 274
Offset: 0
Examples
n=3: a(3)=23, A000045(23)=A105718(3)=28657->2[8]657; n=4: a(4)=38, A000045(38)=A105718(4)=39088169->390[8]8169.
Links
- Robert Israel, Table of n, a(n) for n = 0..5000
- Eric Weisstein's World of Mathematics, Fibonacci Number
Programs
-
Maple
N:= 100: # for a(0)..a(N) V:= Array(0..N): count:= 0: for m from 1 while count < N+1 do v:= combinat:-fibonacci(m); L:= convert(v,base,10); S:= map(t -> t-1, select(t -> L[t]=8, [$1..nops(L)])); for s in S do if s <= N and V[s] = 0 then count:= count+1; V[s]:= m fi od od: convert(V,list); # Robert Israel, Apr 25 2021
Comments