cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105730 Number of different initial values for 3x+1 trajectories in which the largest term appearing in the iteration is 2^(6n+4).

Original entry on oeis.org

6, 12, 8, 6, 13, 8, 6, 9, 11, 6, 21, 8, 6, 78, 8, 6, 9, 13, 6, 15, 8, 6, 16, 8, 6, 9, 20, 6, 12, 8, 6, 13, 8, 6, 9, 11, 6, 14, 8, 6, 32, 8, 6, 9, 32, 6, 23, 8, 6, 24, 8, 6, 9, 14, 6, 12, 8, 6, 13, 8, 6, 9, 11, 6, 14, 8, 6, 19, 8, 6, 9, 13, 6, 80, 8, 6, 29, 8, 6, 9, 18, 6, 12, 8, 6, 13, 8, 6, 9, 11
Offset: 0

Views

Author

David Wasserman, Apr 18 2005

Keywords

Comments

From Hartmut F. W. Hoft, Jun 24 2016: (Start)
The sequence has the quasiperiod 6, x, 8, 6, y, 8, 6, 9, z of length 9 starting at index 0 where x, y, z > 10; in addition, a(3*9*n+1) = 12, a(3*9*n+4) = 13 and a(3*9*n+8) = 11 for all n>=0; proof by induction (see this link) as in the link in A087256 based on the modular identities in the link in A033496.
Conjecture: All numbers greater than 10 appear in the sequence (see also A033496 and A233293). (End)

Examples

			a(1) = 12, i.e. the number of initial values for 2^10, since 804 -> 402 -> 201 -> 604 -> 302 -> 151 -> 454 -> 227 -> 682 -> 341 -> 1024 and 908 -> (454 -> ... -> 1024) are the two maximal trajectories containing all 12 initial values. a(8) = 11 since 2^(6*8+4) has 11 different initial values for Collatz trajectories leading to it. - _Hartmut F. W. Hoft_, Jun 24 2016
		

Crossrefs

Programs

  • Mathematica
    trajectory[start_] := NestWhileList[If[OddQ[#], 3#+1, #/2]&, start, #!=1&]
    fanSize[max_] := Module[{active={max}, fan={}, current}, While[active!={}, current=First[active];active=Rest[active]; AppendTo[fan, current]; If[2*current<=max, AppendTo[active, 2*current]]; If[Mod[current, 3]==1 && OddQ[(current-1)/3] && current>4, AppendTo[active, (current-1)/3]]]; Length[fan]]/;max==Max[trajectory[max]]
    a105730[low_, high_] := Map[fanSize[2^(6#+4)]&, Range[low, high]]
    a105730[0,89] (* Hartmut F. W. Hoft, Jun 24 2016 *)

Formula

a(n) = A087256(6n+4).