A105750 Real part of Product_{k = 0..n} (1 + k*i), i = sqrt(-1).
1, 1, -1, -10, -10, 190, 730, -6620, -55900, 365300, 5864300, -28269800, -839594600, 2691559000, 159300557000, -238131478000, -38894192662000, -15194495654000, 11911522255750000, 29697351895900000, -4477959179352100000, -21683886333440500000, 2029107997508660900000
Offset: 0
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..100
- V. H. Moll, An arithmetic conjecture on a sequence of arctangent sums, 2012, see f_n.
Programs
-
Maple
A105750 := proc(n) mul(1-k*I,k=0..n) ; Re(%) ; end proc: # R. J. Mathar, Jan 04 2013
-
Mathematica
x[n_] := x[n] = If[n == 1, 1, (x[n-1]+n)/(1-n*x[n-1])]; u[n_] := n*x[n-1]-1; f[n_] := f[n] = If[n == 1, 1, u[n]*f[n-1]]; a[n_] := If[n == 0, 1, (-1)^(n+1)*f[n]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 17 2023, after N. J. A. Sloane *)
-
Python
from sympy.functions.combinatorial.numbers import stirling def A105750(n): return sum(stirling(n+1,n+1-(k<<1),kind=1)*(-1 if k&1 else 1) for k in range((n+1>>1)+1)) # Chai Wah Wu, Feb 22 2024
Formula
a(n) = Re( Product_{k = 0..n} (1 - k*i) ).
Conjecture: a(n) -3*a(n-1) +(n^2-n+3)*a(n-2) +(-n^2+4*n-5)*a(n-3)=0. - R. J. Mathar, May 23 2014
From Peter Bala, May 28 2023: (Start)
a(n) = Sum_{k = 0..floor((n + 1)/2)} (-1)^k*|Stirling1(n+1, n-2*k+1)|, where Stirling1(n, k) = A048994(n,k).
(n - 1)*a(n) = (2*n - 1)*a(n-1) - n*(n^2 - 2*n + 2)*a(n-2) with a(0) = a(1) = 1 (see Moll, equation 1.16). Mathar's third-order recurrence above follows easily from this.
a(2*n) = (-1)^n*A009454(2*n+1) for n >= 0.
a(2*n-1) = (-1)^n*A003703(2*n) for n >= 1. (End)
Extensions
Corrected by N. J. A. Sloane, Nov 05 2005
Comments