A105806 Triangle of number of partitions of n with nonnegative Dyson rank r=0,1,...,n-1.
1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 3, 1, 2, 1, 1, 0, 1, 2, 3, 2, 2, 1, 1, 0, 1, 4, 3, 3, 2, 2, 1, 1, 0, 1, 4, 5, 3, 4, 2, 2, 1, 1, 0, 1, 6, 5, 6, 3, 4, 2, 2, 1, 1, 0, 1, 7, 8, 6, 6, 4, 4, 2, 2, 1, 1, 0, 1, 11, 8, 9, 7, 6, 4, 4, 2, 2, 1, 1, 0, 1, 11, 13, 10, 10, 7, 7, 4, 4, 2, 2, 1, 1, 0, 1
Offset: 1
Examples
Triangle starts: 1; 0, 1; 1, 0, 1; 1, 1, 0, 1; 1, 1, 1, 0, 1; 1, 2, 1, 1, 0, 1; ... Row 6, second entry is 2 because there are 2 partitions of n=6 with rank r=2-1=1, namely (3^2) and (1^2,4). The table of p(n,m) = number of partitions of n with rank m, taken from Dyson (1969): n\m -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 ----------------------------------------------------- 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 3 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 4 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 5 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 6 0, 1, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 0, 7 1, 0, 1, 1, 2, 1, 3, 1, 2, 1, 1, 0, 1, ... The central triangle is A063995, the right-hand triangle is the present sequence. - _N. J. A. Sloane_, Jan 23 2020
Links
- Lars Blomberg, Table of n, a(n) for n = 1..5050
- Wolfdieter Lang, First 16 rows.
- Alexander Berkovich and Frank G. Garvan, Some observations on Dyson's new symmetries of partitions, Journal of Combinatorial Theory, Series A 100.1 (2002): 61-93.
- Freeman J. Dyson, Problems for solution nr. 4261, Am. Math. Month. 54 (1947) 418.
- Freeman J. Dyson, A new symmetry of partitions, Journal of Combinatorial Theory 7.1 (1969): 56-61. See Table 1.
- Freeman J. Dyson, Mappings and symmetries of partitions, J. Combin. Theory Ser. A 51 (1989), 169-180.
- Eric Weisstein's World of Mathematics, Conjugation of partitions of n.
- Eric Weisstein's World of Mathematics, Ferrers diagram.
Crossrefs
Formula
a(n, r)= number of partitions of n with rank r, with r from 0, 1, ..., n-1.
G.f. of column r: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(r*k) * ( x^(k*(3*k-1)/2) - x^(k*(3*k+1)/2) ). - Seiichi Manyama, May 21 2023
Comments