A105815 Decimal expansion of the semiprime nested radical.
2, 6, 6, 3, 5, 2, 5, 6, 3, 4, 8, 0, 6, 8, 5, 6, 5, 4, 4, 9, 8, 9, 4, 4, 6, 7, 3, 2, 7, 2, 1, 9, 5, 5, 1, 4, 5, 9, 9, 9, 2, 2, 9, 8, 2, 6, 8, 9, 2, 7, 2, 9, 3, 2, 9, 1, 4, 8, 3, 3, 7, 0, 5, 8, 6, 8, 0, 2, 3, 8, 8, 4, 8, 7, 9, 0, 3, 9, 3, 2, 9, 9, 3, 5, 6, 4, 3, 9, 6, 0, 5, 6, 8, 6, 4, 2, 4, 5, 5, 9, 9, 1, 4, 5, 3
Offset: 1
Examples
2.66352563480685654498944673272195514599922982689272932914833705868...
References
- Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 & 229.
- Steven R. Finch, Analysis of a Radical Expansion, Section 1.2.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, 2003, p. 8.
Links
- Jonathan M. Borwein and G. de Barra, Nested Radicals, Amer. Math. Monthly 98, 735-739, 1991.
- Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl., 332 (2007), 292-314; see pp. 305-306.
- Eric Weisstein's World of Mathematics, Nested Radical Constant.
- Wikipedia, Tirukkannapuram Vijayaraghavan.
Crossrefs
Programs
-
Mathematica
fQ[n_] := Plus @@ Flatten[ Table[ #[[2]], {1}] & /@ FactorInteger[n]] == 2; RealDigits[ Fold[ Sqrt[ #1 + #2] &, 0, Reverse[ Select[ Range[260], fQ[ # ] &]]], 10, 111][[1]] (* Robert G. Wilson v, May 31 2005 *)
Formula
Limit_{n -> infinity} sqrt(4 + sqrt(6 + sqrt(9 + sqrt(10 + sqrt(14 + ... + sqrt(semiprime(n))))), where semiprime(n) = A001358(n).
Comments