A296926 Rational primes that decompose in the field Q(sqrt(-13)).
7, 11, 17, 19, 29, 31, 47, 53, 59, 61, 67, 71, 83, 101, 113, 151, 157, 163, 167, 173, 181, 223, 227, 233, 239, 257, 269, 271, 277, 307, 313, 331, 337, 359, 373, 379, 383, 389, 431, 433, 463, 479, 487, 499, 521, 569, 587, 601, 619, 631, 641, 643, 653, 673, 677, 683, 691
Offset: 1
Links
Programs
-
Maple
Load the Maple program HH given in A296920. Then run HH(-13, 200); This produces A296926, A296927, A296928, A105885.
-
Mathematica
Select[Prime[Range[125]], KroneckerSymbol[-13, #] == 1 &] (* Amiram Eldar, Nov 17 2023 *)
-
PARI
list(lim)=my(v=List()); forprime(p=5,lim, if(kronecker(-13,p)==1, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Mar 18 2018
Formula
a(n) ~ 2n log n. - Charles R Greathouse IV, Mar 18 2018
Primes == {1, 7, 9, 11, 15, 17, 19, 25, 29, 31, 47, 49} (mod 52). - Travis Scott, Jan 05 2023
Comments