A105965 Numbers n such that n = 2^i_1+2^i_2+...2^i_k = b(j_1)*b(j_2)*...b(j_k) for distinct i's and distinct j's, where b is A050376.
2, 4, 6, 10, 12, 16, 18, 20, 33, 34, 36, 42, 48, 56, 65, 68, 70, 80, 84, 88, 104, 120, 129, 138, 140, 144, 152, 200, 210, 216, 224, 256, 266, 270, 272, 273, 276, 290, 296, 312, 322, 328, 330, 336, 352, 360, 385, 390, 392, 408, 416, 420, 448, 456, 480, 514, 518
Offset: 1
Keywords
Examples
16=2^4=2^(2^2), 33=1+32=3*11, 42=2+8+32=2*3*7, 120=8+16+32+64=2*3*4*5. 2 = 2^1 = 2^(2^0) 4 = 2^2 = 2^(2^1) 6 = 2 + 4 = 2 * 3 10 = 2 + 8 = 2 * 5 12 = 4 + 8 = 3 * 4 16 = 2^4 = 2^(2^2) 18 = 2 + 16 = 2 * 9 20 = 4 + 16 = 4 * 5 33 = 1 + 32 = 3 * 11 34 = 2 + 32 = 2 * 17 36 = 4 + 32 = 4 * 9 42 = 2 + 8 + 32 = 2 * 3 * 7 48 = 16 + 32 = 3 * 16 56 = 8 + 16 + 32 = 2 * 4 * 7 65 = 1 + 64 = 5 * 13 68 = 4 + 64 = 4 * 17 70 = 2 + 4 + 64 = 2 * 5 * 7 80 = 16 + 64 = 5 * 16 84 = 4 + 16 + 64 = 3 * 4 * 7 88 = 8 + 16 + 64 = 2 * 4 * 11 104 = 8 + 32 + 64 = 2 * 4 * 13 120 = 8 + 16 + 32 + 64 = 2 * 3 * 4 * 5
Programs
-
PARI
f(n) =if (n, n%2 + f(n\2), 0); g(n) = local(a); a = factor(n); f(n) == sum(i = 1, matsize(a)[1], f(a[i, 2])); for (n = 1, 1000, if (g(n), print1(n, ", "))); \\ David Wasserman, Apr 29 2005
Extensions
More terms from David Wasserman, Apr 29 2005
Examples from Thomas Ordowski, May 11 2005
Comments