A106058 4th diagonal of triangle in A059317.
0, 0, 0, 2, 9, 22, 42, 70, 107, 154, 212, 282, 365, 462, 574, 702, 847, 1010, 1192, 1394, 1617, 1862, 2130, 2422, 2739, 3082, 3452, 3850, 4277, 4734, 5222, 5742, 6295, 6882, 7504, 8162, 8857, 9590, 10362, 11174, 12027, 12922, 13860, 14842, 15869, 16942, 18062
Offset: 0
Links
- W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, A Pascal rhombus, Fibonacci Quarterly, 35 (1997), 318-328.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Mathematica
Join[{0,0}, LinearRecurrence[{4, -6, 4, -1}, {0, 2, 9, 22}, 45]] (* Georg Fischer, Dec 10 2019 *)
-
PARI
a(n)=if(n>2,(n-2)*(n^2 + 8*n - 21)/6,0) \\ Charles R Greathouse IV, Oct 18 2022
Formula
For n>1, a(n) = (1/6)*(n-2)*(n^2 + 8n - 21).
From R. J. Mathar, Feb 06 2010: (Start)
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) for n >= 6.
G.f.: -x^3*(-2-x+2*x^2)/(x-1)^4. (End)
E.g.f.: exp(x)*(42 - 30*x + 9*x^2 + x^3)/6 - 7 - 2*x. - Stefano Spezia, Aug 06 2025