A106127 Numbers k such that k-th semiprime == 2 (mod k).
1, 2, 4, 39, 51, 52, 71, 6920, 613377, 613381, 613405, 613433, 613437, 613449, 613455, 613536, 613537, 613548, 613557, 613569, 613581, 613583, 613587, 613588, 613608, 613613, 58155550, 58155570, 6384425447, 6384425465, 6384425505, 6384425531, 6384425567
Offset: 1
Examples
a(3)=4 is a term because the 4th semiprime (i.e., 10) == 2 (mod 4).
Links
- Lucas A. Brown, semiprimemods.py
Programs
-
Mathematica
SemiprimeQ[n_] := (Plus @@ Last /@ FactorInteger[n] == 2); i = 0; Do[If[SemiprimeQ[n], i++; If[Mod[n, i] == 2, Print[i]]], {n, 10^9}] (* Ryan Propper, May 09 2006 *)
Extensions
More terms from Ryan Propper, May 09 2006
a(1), a(2), and a(29)-a(33) from Lucas A. Brown, Oct 17 2020
Comments