cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106187 Sequence array for central binomial numbers A000984.

Original entry on oeis.org

1, 2, 1, 6, 2, 1, 20, 6, 2, 1, 70, 20, 6, 2, 1, 252, 70, 20, 6, 2, 1, 924, 252, 70, 20, 6, 2, 1, 3432, 924, 252, 70, 20, 6, 2, 1, 12870, 3432, 924, 252, 70, 20, 6, 2, 1, 48620, 12870, 3432, 924, 252, 70, 20, 6, 2, 1, 184756, 48620, 12870, 3432, 924, 252, 70, 20, 6, 2, 1
Offset: 0

Views

Author

Paul Barry, Apr 24 2005

Keywords

Examples

			Triangle begins:
    1;
    2,  1;
    6,  2, 1;
   20,  6, 2, 1;
   70, 20, 6, 2, 1;
  252, 70, 20, 6, 2, 1;
  ...
The matrix inverse starts:
   1;
  -2,1;
  -2,-2,1;
  -4,-2,-2,1;
  -10,-4,-2,-2,1;
  -28,-10,-4,-2,-2,1;
  -84,-28,-10,-4,-2,-2,1;
  -264,-84,-28,-10,-4,-2,-2,1;
apparently related to A002420. - _R. J. Mathar_, Apr 08 2013
		

Crossrefs

Row sums are A006134.
Antidiagonal sums are A106188.
Cf. A000984.

Programs

  • Maple
    A106187 := proc(n,k)
        binomial(2*(n-k),n-k) ;
    end proc: # R. J. Mathar, Apr 08 2013
  • Mathematica
    T[n_, k_] := (((2*n - 2*k)!)/((n - k)!)^2); Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Detlef Meya, Aug 11 2024 *)

Formula

T(n, k) = binomial(2*(n-k), n-k).
Riordan array (1/sqrt(1-4x), x).