A106187 Sequence array for central binomial numbers A000984.
1, 2, 1, 6, 2, 1, 20, 6, 2, 1, 70, 20, 6, 2, 1, 252, 70, 20, 6, 2, 1, 924, 252, 70, 20, 6, 2, 1, 3432, 924, 252, 70, 20, 6, 2, 1, 12870, 3432, 924, 252, 70, 20, 6, 2, 1, 48620, 12870, 3432, 924, 252, 70, 20, 6, 2, 1, 184756, 48620, 12870, 3432, 924, 252, 70, 20, 6, 2, 1
Offset: 0
Examples
Triangle begins: 1; 2, 1; 6, 2, 1; 20, 6, 2, 1; 70, 20, 6, 2, 1; 252, 70, 20, 6, 2, 1; ... The matrix inverse starts: 1; -2,1; -2,-2,1; -4,-2,-2,1; -10,-4,-2,-2,1; -28,-10,-4,-2,-2,1; -84,-28,-10,-4,-2,-2,1; -264,-84,-28,-10,-4,-2,-2,1; apparently related to A002420. - _R. J. Mathar_, Apr 08 2013
Programs
-
Maple
A106187 := proc(n,k) binomial(2*(n-k),n-k) ; end proc: # R. J. Mathar, Apr 08 2013
-
Mathematica
T[n_, k_] := (((2*n - 2*k)!)/((n - k)!)^2); Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Detlef Meya, Aug 11 2024 *)
Formula
T(n, k) = binomial(2*(n-k), n-k).
Riordan array (1/sqrt(1-4x), x).