A106202 Expansion of Im(x/(1 - x - 2*i*x^2)), i=sqrt(-1).
0, 0, 0, 2, 4, 6, 8, 2, -20, -66, -144, -230, -236, 22, 856, 2610, 5308, 7918, 7104, -4150, -36636, -100794, -193368, -269342, -198772, 274974, 1522192, 3846778, 6966452, 8986230, 4917240, -14538862, -61860772, -145127602, -248063392, -292843734, -90180988, 692992166, 2468418888, 5415220546, 8722746156, 9258303102
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,-4).
Programs
-
Mathematica
Table[-Im[Det[Array[KroneckerDelta[#1 + 1, #2]*I &, {n - 1, n - 1}] + Array[KroneckerDelta[#1 - 1, #2]*2 &, {n - 1, n - 1}] + IdentityMatrix[n - 1]]], {n, 2, 40}] (* John M. Campbell, Jun 04 2011 *)
-
PARI
concat(vector(3), Vec(2*x^3/(1-2*x+x^2+4*x^4) + O(x^50))) \\ Michel Marcus, Jan 03 2016
Formula
G.f.: 2*x^3/(1-2*x+x^2+4*x^4).
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k-1, k)*2^k*sin(Pi*k/2).
Comments