A106208 Triangular matrix T, read by rows, that satisfies: [T^-1](n,k) = -(k+1)*T(n-1,k) when (n-1)>=k>=0, with T(n,n) = 1 and T(n+1,n) = (n+1) for n>=0.
1, 1, 1, 3, 2, 1, 16, 10, 3, 1, 127, 78, 21, 4, 1, 1363, 832, 216, 36, 5, 1, 18628, 11342, 2901, 460, 55, 6, 1, 311250, 189286, 48081, 7456, 840, 78, 7, 1, 6173791, 3752320, 949800, 145660, 15955, 1386, 105, 8, 1, 142190703, 86392756, 21826470, 3327340
Offset: 0
Examples
Triangle T begins: 1; 1,1; 3,2,1; 16,10,3,1; 127,78,21,4,1; 1363,832,216,36,5,1; 18628,11342,2901,460,55,6,1; 311250,189286,48081,7456,840,78,7,1; 6173791,3752320,949800,145660,15955,1386,105,8,1; ... Matrix inverse T^-1 begins: 1; -1,1; -1,-2,1; -3,-4,-3,1; -16,-20,-9,-4,1; -127,-156,-63,-16,-5,1; -1363,-1664,-648,-144,-25,-6,1; -18628,-22684,-8703,-1840,-275,-36,-7,1; ... where [T^-1](n,k) = -(k+1)*T(n-1,k) when (n-1)>=k>=0. G.f. for column 0: 1 = 1(1-x) + 1*x*(1-x)(1-2x) + 3*x^2*(1-x)(1-2x)(1-3x) + ... + T(n,0)*x^n*(1-x)(1-2x)(1-3x)*..*(1-(n+1)*x) + ... G.f. for column 1: 1 = 1(1-2x) + 2*x*(1-2x)(1-3x) + 10*x^2*(1-2x)(1-3x)(1-4x) + ... + T(n+1,1)*x^n*(1-2x)(1-3x)(1-4x)*..*(1-(n+2)*x) + ... G.f. for column 2: 1 = 1(1-3x) + 3*x*(1-3x)(1-4x) + 21*x^2*(1-3x)(1-4x)(1-5x) + ... + T(n+2,2)*x^n*(1-3x)(1-4x)(1-5x)*..*(1-(n+3)*x) + ...
Programs
-
PARI
T(n,k)=if(n
-
PARI
T(n,k)=local(A=matrix(1,1),B);A[1,1]=1; for(m=2,n+1,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i,B[i,j]=j,if(j==1,B[i,j]=(A^2)[i-1,1], B[i,j]=(A^2)[i-1,j]));));A=B);return(A[n+1,k+1]/(k+1))
Comments