A106235 Triangle of the numbers of different forests of m rooted trees of smallest order 2, i.e., without isolated vertices.
0, 1, 0, 2, 0, 0, 4, 1, 0, 0, 9, 2, 0, 0, 0, 20, 7, 1, 0, 0, 0, 48, 17, 2, 0, 0, 0, 0, 115, 48, 7, 1, 0, 0, 0, 0, 286, 124, 21, 2, 0, 0, 0, 0, 0, 719, 336, 60, 7, 1, 0, 0, 0, 0, 0, 1842, 888, 171, 21, 2, 0, 0, 0, 0, 0, 0, 4766, 2393, 488, 65, 7, 1, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
a(12)=2 because 5 nodes can be partitioned in two trees only in a way: one tree gets 3 nodes and the other tree gets 2. Since A000081(3) = 2 and A000081(2)=1, there are two forests. Triangle T(n,k) begins: 0; 1, 0; 2, 0, 0; 4, 1, 0, 0; 9, 2, 0, 0, 0; 20, 7, 1, 0, 0, 0; 48, 17, 2, 0, 0, 0, 0; 115, 48, 7, 1, 0, 0, 0, 0; 286, 124, 21, 2, 0, 0, 0, 0, 0; 719, 336, 60, 7, 1, 0, 0, 0, 0, 0;
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Programs
-
Maple
with(numtheory): g:= proc(n) option remember; `if`(n<=1, n, (add(add( d*g(d), d=divisors(j))*g(n-j), j=1..n-1))/(n-1)) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, 0, expand(add(x^j*b(n-i*j, i-1)* binomial(g(i)+j-1, j), j=0..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)): seq(T(n), n=1..14); # Alois P. Heinz, Jun 25 2014
-
Mathematica
g[n_] := g[n] = If[n <= 1, n, (Sum[Sum[d*g[d], {d, Divisors[j]}]*g[n-j], {j, 1, n-1}])/(n-1)]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 1, 0, Expand[Sum[x^j*b[n-i*j, i-1]*Binomial[g[i]+j-1, j], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, n]]; Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Nov 05 2015, after Alois P. Heinz *)
Formula
a(n) = sum over the partitions of N: 1K1 + 2K2 + ... + NKN, with exactly m parts and no part equal to 1, of Product_{i=1..N} binomial(A000081(i)+Ki-1, Ki).
Comments