A106256 Numbers n such that 12*n^2 + 13 is a square.
1, 3, 17, 43, 237, 599, 3301, 8343, 45977, 116203, 640377, 1618499, 8919301, 22542783, 124229837, 313980463, 1730298417, 4373183699, 24099948001, 60910591323, 335668973597, 848375094823, 4675265682357, 11816340736199
Offset: 1
Examples
12*1^2+13 = 5^2. 12*3^2+13 = 11^2. 12*17^2+13 = 59^2.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,14,0,-1).
Crossrefs
Cf. A106257.
Programs
-
PARI
Vec(x*(x+1)^3/((x^2-4*x+1)*(x^2+4*x+1)) + O(x^100)) \\ Colin Barker, Apr 16 2014
Formula
Recurrence: a(1)=1, a(2)=3, a(3)=14*a(1)+a(2), a(4)=14*a(2)+a(1) then a(n)=14*a(n-2)-a(n-4).
G.f.: x*(x+1)^3 / ((x^2-4*x+1)*(x^2+4*x+1)). - Corrected by Colin Barker, Apr 16 2014
Extensions
Edited by Ralf Stephan, Jun 01 2007