A106281 Primes p such that the polynomial x^5-x^4-x^3-x^2-x-1 mod p has 5 distinct zeros.
691, 733, 3163, 4259, 4397, 5419, 6637, 6733, 8009, 8311, 9803, 11731, 14923, 17291, 20627, 20873, 22777, 25111, 26339, 27947, 29339, 29389, 29527, 29917, 34123, 34421, 34739, 34757, 36527, 36809, 38783, 40433, 40531, 41131, 42859, 43049
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
Crossrefs
Programs
-
Mathematica
t=Table[p=Prime[n]; cnt=0; Do[If[Mod[x^5-x^4-x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 5000}];Prime[Flatten[Position[t, 5]]]
-
Python
from itertools import islice from sympy import Poly, nextprime from sympy.abc import x def A106281_gen(): # generator of terms p = 2 while True: if len(Poly(x*(x*(x*(x*(x-1)-1)-1)-1)-1, x, modulus=p).ground_roots())==5: yield p p = nextprime(p) A106281_list = list(islice(A106281_gen(),20)) # Chai Wah Wu, Mar 14 2024
Comments