A106282 Primes p such that the polynomial x^3-x^2-x-1 mod p has no zeros; i.e., the polynomial is irreducible over the integers mod p.
3, 5, 23, 31, 37, 59, 67, 71, 89, 97, 113, 137, 157, 179, 181, 191, 223, 229, 251, 313, 317, 331, 353, 367, 379, 383, 389, 433, 443, 449, 463, 467, 487, 509, 521, 577, 619, 631, 641, 643, 647, 653, 661, 691, 709, 719, 727, 751, 797, 823, 829, 839, 859, 881
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..300
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number
Crossrefs
Primes in A028952.
Cf. A106276 (number of distinct zeros of x^3-x^2-x-1 mod prime(n)), A106294, A106302 (period of Lucas and Fibonacci 3-step sequence mod prime(n)), A003631 (primes p such that x^2-x-1 is irreducible mod p).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Programs
-
Mathematica
t=Table[p=Prime[n]; cnt=0; Do[If[Mod[x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 200}];Prime[Flatten[Position[t, 0]]]
-
PARI
forprime(p=2,1000,if(#polrootsmod(x^3-x^2-x-1,p)==0,print1(p,", "))); /* Joerg Arndt, Jul 19 2012 */
Comments