cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106282 Primes p such that the polynomial x^3-x^2-x-1 mod p has no zeros; i.e., the polynomial is irreducible over the integers mod p.

Original entry on oeis.org

3, 5, 23, 31, 37, 59, 67, 71, 89, 97, 113, 137, 157, 179, 181, 191, 223, 229, 251, 313, 317, 331, 353, 367, 379, 383, 389, 433, 443, 449, 463, 467, 487, 509, 521, 577, 619, 631, 641, 643, 647, 653, 661, 691, 709, 719, 727, 751, 797, 823, 829, 839, 859, 881
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This polynomial is the characteristic polynomial of the Fibonacci and Lucas 3-step sequences, A000073 and A001644.
Primes of the form 3x^2+2xy+4y^2 with x and y in Z. - T. D. Noe, May 08 2005

Crossrefs

Primes in A028952.
Cf. A106276 (number of distinct zeros of x^3-x^2-x-1 mod prime(n)), A106294, A106302 (period of Lucas and Fibonacci 3-step sequence mod prime(n)), A003631 (primes p such that x^2-x-1 is irreducible mod p).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    t=Table[p=Prime[n]; cnt=0; Do[If[Mod[x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 200}];Prime[Flatten[Position[t, 0]]]
  • PARI
    forprime(p=2,1000,if(#polrootsmod(x^3-x^2-x-1,p)==0,print1(p,", ")));
    /* Joerg Arndt, Jul 19 2012 */