A106283 Primes p such that the polynomial x^4-x^3-x^2-x-1 mod p has no zeros.
2, 5, 11, 13, 31, 43, 53, 79, 83, 89, 97, 103, 109, 131, 139, 151, 197, 199, 229, 233, 239, 251, 257, 271, 283, 313, 317, 347, 359, 367, 379, 389, 433, 443, 461, 479, 487, 521, 569, 571, 577, 593, 599, 601, 617, 631, 641, 643, 647, 659, 673, 677, 719, 769, 797
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number
Crossrefs
Programs
-
Maple
Res:= NULL: count:= 0: p:= 0: P:= x^4 - x^3 - x^2 - x - 1: while count < 100 do p:= nextprime(p); if [msolve(P,p)] = [] then Res:= Res, p; count:= count+1; fi od: Res; # Robert Israel, Mar 13 2024
-
Mathematica
t=Table[p=Prime[n]; cnt=0; Do[If[Mod[x^4-x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 200}];Prime[Flatten[Position[t, 0]]]
-
Python
from itertools import islice from sympy import Poly, nextprime from sympy.abc import x def A106283_gen(): # generator of terms p = 2 while True: if len(Poly(x*(x*(x*(x-1)-1)-1)-1, x, modulus=p).ground_roots())==0: yield p p = nextprime(p) A106283_list = list(islice(A106283_gen(),20)) # Chai Wah Wu, Mar 14 2024
Extensions
Name corrected by Robert Israel, Mar 13 2024
Comments