cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A106278 Number of distinct zeros of x^5-x^4-x^3-x^2-x-1 mod prime(n).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 2, 3, 0, 2, 3, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 3, 1, 2, 3, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 3, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 3, 1, 0, 1, 0, 0, 0, 1, 1, 1, 2, 1, 2, 0, 2, 0, 1, 1, 0, 1, 2, 0, 0, 2, 2, 1, 1, 2, 0, 0, 2, 1, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This polynomial is the characteristic polynomial of the Fibonacci and Lucas 5-step sequences, A001591 and A074048. Similar polynomials are treated in Serre's paper. The discriminant of the polynomial is 9584=16*599 and 599 is the only prime for which the polynomial has 4 distinct zeros. The primes p yielding 5 distinct zeros, A106281, correspond to the periods of the sequences A001591(k) mod p and A074048(k) mod p having length less than p. The Lucas 5-step sequence mod p has one additional prime p for which the period is less than p: the 599 factor of the discriminant. For this prime, the Fibonacci 5-step sequence mod p has a period of p(p-1).

Crossrefs

Cf. A106298 (period of the Lucas 5-step sequences mod prime(n)), A106284 (prime moduli for which the polynomial is irreducible).

Programs

  • Mathematica
    Table[p=Prime[n]; cnt=0; Do[If[Mod[x^5-x^4-x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 150}]
  • Python
    from sympy import Poly, prime
    from sympy.abc import x
    def A106278(n): return len(Poly(x*(x*(x*(x*(x-1)-1)-1)-1)-1, x, modulus=prime(n)).ground_roots()) # Chai Wah Wu, Mar 14 2024
Showing 1-1 of 1 results.