cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106289 Number of different orbit lengths of the 4-step recursion mod n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 4, 4, 4, 4, 3, 5, 3, 8, 3, 5, 3, 8, 3, 5, 7, 4, 4, 7, 3, 6, 6, 9, 4, 6, 2, 6, 6, 6, 6, 10, 5, 6, 6, 6, 5, 14, 2, 6, 5, 8, 3, 9, 7, 4, 6, 7, 2, 12, 5, 12, 6, 7, 4, 7, 3, 4, 8, 7, 5, 8, 4, 7, 7, 12, 3, 14, 4, 10, 4, 8, 10, 12, 2, 7, 8, 6, 2, 15, 6, 3, 8, 8, 2, 10, 8, 9, 3, 6, 6, 11, 2, 14, 8
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

Consider the 4-step recursion x(k)=x(k-1)+x(k-2)+x(k-3)+x(k-4) mod n. For any of the n^4 initial conditions x(1), x(2), x(3) and x(4) in Zn, the recursion has a finite period. Each of these n^4 vectors belongs to exactly one orbit. In general, there are only a few different orbit lengths for each n. For n=8, there are 4 different lengths: 1, 5, 10 and 20. The maximum possible length of an orbit is the period of the Fibonacci 4-step sequence mod n, which is essentially A106295(n).

Crossrefs

Cf. A106286 (orbits of 4-step sequences).