cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A106282 Primes p such that the polynomial x^3-x^2-x-1 mod p has no zeros; i.e., the polynomial is irreducible over the integers mod p.

Original entry on oeis.org

3, 5, 23, 31, 37, 59, 67, 71, 89, 97, 113, 137, 157, 179, 181, 191, 223, 229, 251, 313, 317, 331, 353, 367, 379, 383, 389, 433, 443, 449, 463, 467, 487, 509, 521, 577, 619, 631, 641, 643, 647, 653, 661, 691, 709, 719, 727, 751, 797, 823, 829, 839, 859, 881
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This polynomial is the characteristic polynomial of the Fibonacci and Lucas 3-step sequences, A000073 and A001644.
Primes of the form 3x^2+2xy+4y^2 with x and y in Z. - T. D. Noe, May 08 2005

Crossrefs

Primes in A028952.
Cf. A106276 (number of distinct zeros of x^3-x^2-x-1 mod prime(n)), A106294, A106302 (period of Lucas and Fibonacci 3-step sequence mod prime(n)), A003631 (primes p such that x^2-x-1 is irreducible mod p).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    t=Table[p=Prime[n]; cnt=0; Do[If[Mod[x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 200}];Prime[Flatten[Position[t, 0]]]
  • PARI
    forprime(p=2,1000,if(#polrootsmod(x^3-x^2-x-1,p)==0,print1(p,", ")));
    /* Joerg Arndt, Jul 19 2012 */

A106302 Period of the Fibonacci 3-step sequence A000073 mod prime(n).

Original entry on oeis.org

4, 13, 31, 48, 110, 168, 96, 360, 553, 140, 331, 469, 560, 308, 46, 52, 3541, 1860, 1519, 5113, 5328, 3120, 287, 8011, 3169, 680, 51, 1272, 990, 12883, 5376, 5720, 18907, 3864, 7400, 2850, 8269, 162, 9296, 2494, 32221, 10981, 36673, 4656, 3234, 198, 5565
Offset: 1

Views

Author

T. D. Noe, May 02 2005, Sep 18 2008

Keywords

Comments

This sequence differs from the corresponding Lucas sequence (A106294) at n=1 and 5 because these correspond to the primes 2 and 11, which are the prime factors of -44, the discriminant of the characteristic polynomial x^3-x^2-x-1. We have a(n) < prime(n) for the primes in A106279.

Crossrefs

Programs

  • Mathematica
    n=3; Table[p=Prime[i]; a=Join[{1},Table[0,{n-1}]]; a=Mod[a,p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i,60}]
  • Python
    from itertools import count
    from sympy import prime
    def A106302(n):
        a = b = (0,)*2+(1 % (p:= prime(n)),)
        for m in count(1):
            b = b[1:] + (sum(b) % p,)
            if a == b:
                return m # Chai Wah Wu, Feb 27 2022

Formula

a(n) = A046738(prime(n)).

A106279 Primes p such that the polynomial x^3-x^2-x-1 mod p has 3 distinct zeros.

Original entry on oeis.org

47, 53, 103, 163, 199, 257, 269, 311, 397, 401, 419, 421, 499, 587, 599, 617, 683, 757, 773, 863, 883, 907, 911, 929, 991, 1021, 1087, 1109, 1123, 1181, 1237, 1291, 1307, 1367, 1433, 1439, 1543, 1567, 1571, 1609, 1621, 1697, 1699, 1753, 1873, 1907, 2003
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This polynomial is the characteristic polynomial of the Fibonacci and Lucas 3-step sequences, A000073 and A001644. The periods of the sequences A000073(k) mod p and A001644(k) mod p have length less than p. For a given p, let the zeros be a, b and c. Then A001644(k) mod p = (a^k+b^k+c^k) mod p. This sequence is the same as A033209 except for the initial term.

Crossrefs

Cf. A106276 (number of distinct zeros of x^3-x^2-x-1 mod prime(n)), A106294, A106302 (periods of the Fibonacci and Lucas 3-step sequences mod prime(n)).

Programs

  • Mathematica
    t=Table[p=Prime[n]; cnt=0; Do[If[Mod[x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 500}];Prime[Flatten[Position[t, 3]]]
Showing 1-3 of 3 results.