A106295 Period of the Lucas 4-step sequence A073817 mod n.
1, 5, 26, 10, 312, 130, 342, 20, 78, 1560, 120, 130, 84, 1710, 312, 40, 4912, 390, 6858, 1560, 4446, 120, 12166, 260, 1560, 420, 234, 1710, 280, 1560, 61568, 80, 1560, 24560, 17784, 390, 1368, 34290, 1092, 1560, 240, 22230, 162800, 120, 312, 60830, 103822
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..1486
- Marcellus E. Waddill, Some Properties of the Tetranacci Sequence Modulo m, The Fibonacci Quarterly, vol. 30, no. 3, 232-238 (1992).
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number
Programs
-
Mathematica
n=4; Table[p=i; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 60}]
-
Python
from itertools import count def A106295(n): a = b = (4%n,1%n,3%n,7%n) s = sum(b) % n for m in count(1): b, s = b[1:] + (s,), (s+s-b[0]) % n if a == b: return m # Chai Wah Wu, Feb 22-27 2022
Formula
Let the prime factorization of n be p1^e1...pk^ek. Then a(n) = lcm(a(p1^e1), ..., a(pk^ek)).
a(2^k) = 5*2^(k-1) for k > 0. If a(p) != a(p^2) for p prime, then a(p^k) = p^(k-1)*a(p) for k > 0 [Waddill, 1992]. - Chai Wah Wu, Feb 25 2022
Comments