cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106296 Period of the Lucas 4-step sequence A073817 mod prime(n).

Original entry on oeis.org

5, 26, 312, 342, 120, 84, 4912, 6858, 12166, 280, 61568, 1368, 240, 162800, 103822, 303480, 205378, 226980, 100254, 357910, 2664, 998720, 1157520, 9320, 368872, 1030300, 10608, 1225042, 2614040, 13874, 2048382, 4530768, 136, 772880, 3307948
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This sequence is the same as the period of Fibonacci 4-step sequence (A000078) mod prime(n) except for n=103, which corresponds to the prime 563 because the discriminant of the characteristic polynomial x^4-x^3-x^2-x-1 is -563. We have a(n) < prime(n) for primes 563 and A106280.

Crossrefs

Cf. A106273 (discriminant of the polynomial x^n-x^(n-1)-...-x-1), A106280 (primes p such that x^4-x^3-x^2-x-1 mod p has 4 distinct zeros), A106295.

Programs

  • Mathematica
    n=4; Table[p=Prime[i]; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 60}]

Formula

a(n) = A106295(prime(n)).