A106304 Period of the Fibonacci 5-step sequence A001591 mod prime(n).
6, 104, 781, 2801, 16105, 30941, 88741, 13032, 12166, 70728, 190861, 1926221, 2896405, 79506, 736, 8042221, 102689, 3720, 20151120, 2863280, 546120, 39449441, 48030024, 3690720, 29509760, 104060400, 37516960, 132316201, 28231632, 6384, 86714880, 2248090, 3128
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..86
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number
Crossrefs
Cf. A106281 (primes p such that x^5-x^4-x^3-x^2-x-1 mod p has 5 distinct zeros).
Programs
-
Mathematica
n=5; Table[p=Prime[i]; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 40}]
-
Python
from itertools import count from sympy import prime def A106304(n): a = b = (0,)*4+(1 % (p:= prime(n)),) s = 1 % p for m in count(1): b, s = b[1:] + (s,), (s+s-b[0]) % p if a == b: return m # Chai Wah Wu, Feb 22-27 2022
Formula
a(n) = A106303(prime(n)).
Extensions
a(31)-a(33) from Chai Wah Wu, Feb 27 2022
Comments