cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106306 Primes that yield a simple orbit structure in 2-step recursions.

Original entry on oeis.org

2, 3, 7, 13, 17, 23, 37, 41, 43, 47, 53, 61, 67, 73, 83, 89, 97, 103, 107, 109, 113, 127, 137, 149, 157, 163, 167, 173, 193, 197, 223, 227, 233, 241, 257, 263, 269, 277, 281, 283, 293, 307, 313, 317, 337, 347, 353, 367, 373, 383, 389, 397, 401, 409, 421, 433
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

Consider the 2-step recursion x(k)=x(k-1)+x(k-2) mod n. For any of the n^2 initial conditions x(1) and x(2) in Zn, the recursion has a finite period. When n is a prime in this sequence, all of the orbits, except the one containing (0,0), have the same length.
Except for 5, this appears to be the complement of A053032, odd primes p with one 0 in Fibonacci numbers mod p. - T. D. Noe, May 03 2005
A prime p is in this sequence if either (1) the polynomial x^2-x-1 mod p has no zeros for x in [0,p-1] (see A086937) or (2) the polynomial has zeros, but none is a root of unity mod p. The first few primes in the second category are 41, 61, 89 and 109. - T. D. Noe, May 12 2005

Crossrefs

Cf. A015134 (orbits of 2-step sequences).