cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106333 Decimal expansion of the constant x that satisfies: F(x) - x*F'(x) = 0, where F(x) = Sum_{n>=0} x^(n*(n+1)/2).

Original entry on oeis.org

6, 4, 1, 1, 8, 0, 3, 8, 8, 4, 2, 9, 9, 5, 4, 5, 7, 9, 6, 4, 5, 6, 4, 4, 8, 8, 8, 6, 2, 8, 3, 0, 1, 1, 0, 6, 5, 5, 3, 4, 1, 9, 6, 1, 8, 9, 1, 0, 0, 7, 1, 1, 9, 0, 8, 7, 7, 5, 6, 0, 3, 0, 5, 0, 5, 1, 3, 1, 7, 2, 7, 8, 4, 5, 7, 5, 9, 2, 4, 7, 3, 3, 2, 3, 7, 8, 4, 6, 3, 5, 1, 2, 0, 8, 8, 3, 7, 9, 3, 2, 2, 4, 8, 9, 6
Offset: 0

Views

Author

Paul D. Hanna, Apr 29 2005

Keywords

Comments

Not equal to exp(-4/9), which agrees with the first 16 decimal places. Related to Jacobi theta constant theta_2 and Dedekind's eta(x^2)^2/eta(x): Sum_{n>=0} x^(n*(n+1)/2) = 1.9873697... (A106334). This constant divided by constant A106334 equals constant A106335, the radius of convergence of the g.f. of A106336.

Examples

			0 = 1 - 2*x^3 - 5*x^6 - 9*x^10 - 14*x^15 - 20*x^21 - 27*x^28 - ...
x=0.641180388429954579645644888628301106553419618910071190877560305051317278
		

Crossrefs

Programs

  • Mathematica
    digits = 105; g[x_?NumericQ] := NSum[(1 - n*(n+1)/2)*x^(n*(n+1)/2), {n, 0, Infinity}, WorkingPrecision -> digits+5, NSumTerms -> 100]; x /. FindRoot[g[x], {x, 1/2}, WorkingPrecision -> digits+5] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 12 2013 *)
  • PARI
    solve(x=.6,.7,sum(n=0,100,(1-n*(n+1)/2)*x^(n*(n+1)/2)))

Formula

Sum_{n>=0} (1 - n*(n+1)/2)*x^(n*(n+1)/2) = 0.