A106335 Decimal expansion of the radius of convergence of the g.f. of A106336; equals constant A106333 divided by constant A106334.
3, 2, 2, 6, 2, 7, 6, 3, 2, 6, 9, 2, 1, 9, 1, 1, 3, 3, 0, 9, 6, 9, 8, 7, 1, 3, 8, 6, 7, 3, 9, 8, 3, 0, 2, 3, 3, 2, 2, 9, 0, 4, 2, 4, 3, 7, 4, 6, 7, 1, 7, 4, 5, 2, 1, 6, 0, 5, 6, 2, 0, 9, 1, 2, 4, 5, 5, 4, 8, 6, 2, 6, 7, 4, 1, 1, 1, 5, 0, 6, 4, 9, 7, 4, 7, 1, 2, 3, 7, 3, 9, 9, 1, 2, 2, 1, 4, 7, 8, 5, 3, 7, 1, 9, 0
Offset: 0
Examples
x/F(x)=0.322627632692191133096987138673983023322904243746717452160562... where F(x) = 1 + x + x^3 + x^6 + x^10 + x^15 + x^21 + x^28 + ... so F(x) = 1.9873697211846841452692897833444126... (A106334) at x = 0.6411803884299545796456448886283011... (A106333).
Programs
-
Mathematica
digits = 105; x0 = x /. FindRoot[ Sum[(1 - n*(n+1)/2)*x^(n*(n+1)/2), {n, 0, digits}], {x, 1/2}, WorkingPrecision -> digits+5]; f[x_] := EllipticTheta[2, 0, Sqrt[x]]/(2*x^(1/8)); x0/f[x0] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Mar 05 2013 *)
-
PARI
A106333=solve(x=.6,.7,sum(n=0,100,(1-n*(n+1)/2)*x^(n*(n+1)/2))); A106334=sum(n=0,100, A106333^(n*(n+1)/2)); A106335=A106333/A106334
Formula
Constant equals the ratio x/F(x) evaluated at the constant x that satisfies: F(x) - x*F'(x) = 0, where F(x) = Sum_{n>=0} x^(n*(n+1)/2).
Comments