cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106335 Decimal expansion of the radius of convergence of the g.f. of A106336; equals constant A106333 divided by constant A106334.

Original entry on oeis.org

3, 2, 2, 6, 2, 7, 6, 3, 2, 6, 9, 2, 1, 9, 1, 1, 3, 3, 0, 9, 6, 9, 8, 7, 1, 3, 8, 6, 7, 3, 9, 8, 3, 0, 2, 3, 3, 2, 2, 9, 0, 4, 2, 4, 3, 7, 4, 6, 7, 1, 7, 4, 5, 2, 1, 6, 0, 5, 6, 2, 0, 9, 1, 2, 4, 5, 5, 4, 8, 6, 2, 6, 7, 4, 1, 1, 1, 5, 0, 6, 4, 9, 7, 4, 7, 1, 2, 3, 7, 3, 9, 9, 1, 2, 2, 1, 4, 7, 8, 5, 3, 7, 1, 9, 0
Offset: 0

Views

Author

Paul D. Hanna, Apr 29 2005

Keywords

Comments

The g.f. of A106336 equals (1/x)*Series_Reversion( x*eta(x)/eta(x^2)^2 ).
This constant is very close to 2^(3/2) / (3*sqrt(e*Pi)) = 0.3226276326921911330637735905807475397715626276499133673167401123748... - Vaclav Kotesovec, Aug 02 2017

Examples

			x/F(x)=0.322627632692191133096987138673983023322904243746717452160562...
where F(x) = 1 + x + x^3 + x^6 + x^10 + x^15 + x^21 + x^28 + ...
so F(x) = 1.9873697211846841452692897833444126... (A106334)
at x = 0.6411803884299545796456448886283011... (A106333).
		

Crossrefs

Programs

  • Mathematica
    digits = 105; x0 = x /. FindRoot[ Sum[(1 - n*(n+1)/2)*x^(n*(n+1)/2), {n, 0, digits}], {x, 1/2}, WorkingPrecision -> digits+5]; f[x_] := EllipticTheta[2, 0, Sqrt[x]]/(2*x^(1/8)); x0/f[x0] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Mar 05 2013 *)
  • PARI
    A106333=solve(x=.6,.7,sum(n=0,100,(1-n*(n+1)/2)*x^(n*(n+1)/2))); A106334=sum(n=0,100, A106333^(n*(n+1)/2)); A106335=A106333/A106334

Formula

Constant equals the ratio x/F(x) evaluated at the constant x that satisfies: F(x) - x*F'(x) = 0, where F(x) = Sum_{n>=0} x^(n*(n+1)/2).