cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106345 Diagonal sums of number triangle A106344.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 2, 1, 2, 1, 1, 1, 2, 0, 3, 2, 3, 1, 3, 2, 2, 1, 2, 1, 3, 1, 2, 2, 3, 0, 5, 3, 5, 2, 4, 3, 4, 1, 5, 3, 4, 2, 3, 2, 3, 1, 3, 2, 4, 1, 4, 3, 3, 1, 4, 2, 5, 2, 3, 3, 5, 0, 8, 5, 8, 3, 7, 5, 6, 2, 7, 4, 7, 3, 5, 4, 6, 1, 8, 5, 7, 3, 6, 4, 5, 2, 5, 3, 5, 2, 4, 3, 4, 1, 5, 3, 6, 2, 5, 4, 5, 1, 7
Offset: 0

Views

Author

Paul Barry, Apr 29 2005

Keywords

Comments

This is a "bow" sequence, a companion to A281185. - N. J. A. Sloane, Apr 26 2017
Number of ways of writing n=sum_i c_i*2^i with c_i in {0,2,3} [Anders]. - R. J. Mathar, Mar 01 2023

Crossrefs

Programs

  • Maple
    f:=proc(n) option remember;
    if n=0 then 0
    elif n=1 then 0
    elif n=2 then 1
    else
       if n mod 2 = 0 then f(n/2)+f(1+n/2) else f((n-1)/2) fi;
    fi;
    end;
    [seq(f(n),n=2..150)]; # (Note that with this recurrence, we list the values starting at n = 2.  N. J. A. Sloane, Apr 26 2017
  • Mathematica
    Table[Sum[Mod[Binomial[k, n-2k], 2], {k, 0, n/2}], {n, 0, 102}] (* Jean-François Alcover, Nov 16 2019 *)
  • Python
    a = [0]*(104*2)
    a[1]=1
    for n in range(1,104):
        a[2*n  ]=a[n-1]
        a[2*n+1]=a[n]+a[n+1]
        print(str(a[n]), end=',')
    # Alex Ratushnyak, Jul 04 2012

Formula

a(n) = Sum_{k=0..floor(n/2)} (binomial(k, n-2k) mod 2).
G.f. A(x) satisfies: A(x) = (1 + x^2 + x^3) * A(x^2). - Ilya Gutkovskiy, Jul 09 2019