A106345 Diagonal sums of number triangle A106344.
1, 0, 1, 1, 1, 0, 2, 1, 2, 1, 1, 1, 2, 0, 3, 2, 3, 1, 3, 2, 2, 1, 2, 1, 3, 1, 2, 2, 3, 0, 5, 3, 5, 2, 4, 3, 4, 1, 5, 3, 4, 2, 3, 2, 3, 1, 3, 2, 4, 1, 4, 3, 3, 1, 4, 2, 5, 2, 3, 3, 5, 0, 8, 5, 8, 3, 7, 5, 6, 2, 7, 4, 7, 3, 5, 4, 6, 1, 8, 5, 7, 3, 6, 4, 5, 2, 5, 3, 5, 2, 4, 3, 4, 1, 5, 3, 6, 2, 5, 4, 5, 1, 7
Offset: 0
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..25000
- K. Anders, Counting Non-Standard Binary Representations, JIS vol 19 (2016) #16.3.3 example 7.
- George Beck and Karl Dilcher, A Matrix Related to Stern Polynomials and the Prouhet-Thue-Morse Sequence, arXiv:2106.10400 [math.CO], 2021.
- Melissa Dennison, On Properties of the General Bow Sequence, J. Int. Seq., Vol. 22 (2019), Article 19.2.7.
Programs
-
Maple
f:=proc(n) option remember; if n=0 then 0 elif n=1 then 0 elif n=2 then 1 else if n mod 2 = 0 then f(n/2)+f(1+n/2) else f((n-1)/2) fi; fi; end; [seq(f(n),n=2..150)]; # (Note that with this recurrence, we list the values starting at n = 2. N. J. A. Sloane, Apr 26 2017
-
Mathematica
Table[Sum[Mod[Binomial[k, n-2k], 2], {k, 0, n/2}], {n, 0, 102}] (* Jean-François Alcover, Nov 16 2019 *)
-
Python
a = [0]*(104*2) a[1]=1 for n in range(1,104): a[2*n ]=a[n-1] a[2*n+1]=a[n]+a[n+1] print(str(a[n]), end=',') # Alex Ratushnyak, Jul 04 2012
Formula
a(n) = Sum_{k=0..floor(n/2)} (binomial(k, n-2k) mod 2).
G.f. A(x) satisfies: A(x) = (1 + x^2 + x^3) * A(x^2). - Ilya Gutkovskiy, Jul 09 2019
Comments