A106404 Number of even semiprimes dividing n.
0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0
Offset: 1
Keywords
Examples
a(60) = #{4, 6, 10} = #{2*2, 2*3, 2*5} = 3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a106404 n = length [d | d <- takeWhile (<= n) a100484_list, mod n d == 0] -- Reinhard Zumkeller, Jan 31 2012
-
Mathematica
Table[Length[Select[Divisors[n],PrimeQ[#]&&EvenQ[n/#]&]],{n,100}] (* Gus Wiseman, Jun 06 2018 *) Table[Count[Divisors[n],?(EvenQ[#]&&PrimeOmega[#]==2&)],{n,110}] (* _Harvey P. Dale, May 04 2021 *) a[n_] := If[EvenQ[n], PrimeNu[n/2], 0]; Array[a, 100] (* Amiram Eldar, Jun 26 2022 *)
-
PARI
a(n)=if(n%2,0,omega(n/2)) \\ Charles R Greathouse IV, Jan 30 2012
-
Sage
def A106404(n): return add(1-(n/d)%2 for d in divisors(n) if is_prime(d)) print([A106404(n) for n in (1..105)]) # Peter Luschny, Jan 30 2012
Formula
a(A100484(n)) = 1.
a(A005408(n)) = 0.
a(A005843(n)) > 0 for n>1.
a(2n) = omega(n), a(2n+1) = 0, where omega(n) is the number of distinct prime divisors of n, A001221. - Franklin T. Adams-Watters, Jun 09 2006
a(n) = card { d | d*p = n, d even, p prime }. - Peter Luschny, Jan 30 2012
O.g.f.: Sum_{p prime} x^(2p)/(1 - x^(2p)). - Gus Wiseman, Jun 06 2018
Comments