A106418 Smallest number beginning with 8 that is the product of exactly n distinct primes.
83, 82, 805, 858, 8610, 81510, 870870, 80150070, 800509710, 8254436190, 800680310430, 8222980095330, 800160280950030, 80008785365579070, 843685980760953330, 80058789202898516010, 8003887646839494820410
Offset: 1
Examples
a(3) = 805 = 5*7*23.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..43
Programs
-
Python
from itertools import count from math import prod, isqrt from sympy import primerange, integer_nthroot, primepi, primorial def A106418(n): if n == 1: return 83 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) def bisection(f,kmin,kmax,mmin,mmax): while kmax-kmin > 1: kmid = kmax+kmin>>1 mmid = f(kmid) if mmid > mmin: kmax, mmax = kmid, mmid else: kmin, mmin = kmid, mmid return kmax for l in count(len(str(primorial(n)))-1): kmin, kmax = 8*10**l-1, 9*10**l-1 mmin, mmax = f(kmin), f(kmax) if mmax>mmin: return bisection(f,kmin,kmax,mmin,mmax) # Chai Wah Wu, Aug 31 2024