A106424 Smallest number beginning with 4 and having exactly n prime divisors counted with multiplicity.
41, 4, 42, 40, 48, 400, 432, 4000, 4032, 40000, 4608, 4096, 41472, 40960, 49152, 409600, 442368, 4063232, 4128768, 40310784, 4718592, 4194304, 42467328, 41943040, 411041792, 419430400, 452984832, 402653184, 4076863488, 4026531840
Offset: 1
Examples
a(1) = 41, a(3) = 42 = 2*3*7.
Programs
-
Python
from itertools import count from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A106424(n): if n == 1: return 41 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) for l in count(len(str(1<
mmin: while kmax-kmin > 1: kmid = kmax+kmin>>1 mmid = f(kmid) if mmid > mmin: kmax, mmax = kmid, mmid else: kmin, mmin = kmid, mmid return kmax # Chai Wah Wu, Sep 12 2024