A106425 Smallest number beginning with 5 and having exactly n prime divisors counted with multiplicity.
5, 51, 50, 54, 500, 504, 5000, 576, 512, 5184, 5120, 50176, 51200, 55296, 507904, 516096, 5038848, 589824, 524288, 5308416, 5242880, 51380224, 52428800, 56623104, 50331648, 509607936, 503316480, 5096079360, 536870912, 5435817984
Offset: 1
Examples
a(4) = 54 = 2*3^3.
Programs
-
Python
from itertools import count from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A106425(n): if n == 1: return 5 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) for l in count(len(str(1<
mmin: while kmax-kmin > 1: kmid = kmax+kmin>>1 mmid = f(kmid) if mmid > mmin: kmax, mmax = kmid, mmid else: kmin, mmin = kmid, mmid return kmax # Chai Wah Wu, Sep 12 2024