cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106443 Exponent-recursed cross-domain bijection from GF(2)[X] to N. Position of A106456(n) in A075166.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 6, 5, 8, 15, 18, 7, 12, 11, 10, 27, 16, 81, 30, 13, 36, 25, 14, 33, 24, 17, 22, 45, 20, 21, 54, 19, 512, 57, 162, 55, 60, 23, 26, 63, 72, 29, 50, 51, 28, 135, 66, 31, 768, 35, 34, 19683, 44, 39, 90, 37, 40, 99, 42, 41, 108, 43, 38, 75, 64, 225, 114, 47
Offset: 0

Views

Author

Antti Karttunen, May 09 2005

Keywords

Comments

This map from the multiplicative domain of GF(2)[X] to that of N preserves Catalan-family structures, e.g. A075164(n) = a(A106454(n)), A106453(n) = A075163(a(n)), A106455(n) = A075165(a(n)), A106456(n) = A075166(a(n)), A106457(n) = A075167(a(n)). Shares with A091203 and A106445 the property that maps A014580(n) to A000040(n). Differs from the former for the first time at n=32, where A091203(32)=32, while a(32)=512. Differs from the latter for the first time at n=48, where A106445(48)=48, while a(48)=768.

Examples

			a(5) = 9, as 5 encodes the GF(2)[X] polynomial x^2+1, which is the square of the second irreducible GF(2)[X] polynomial x+1 (encoded as 3) and the square of the second prime is 3^2=9. a(32) = a(A048723(2,5)) = 2^a(5) = 2^9 = 512. a(48) = a(3 X A048723(2,4)) = 3 * 2^(a(4+1)-1) = 3 * 2^(9-1) = 3 * 256 = 768.
		

Crossrefs

Inverse: A106442. a(n) = A075164(A106453(n)).

Formula

a(0)=0, a(1)=1. For irreducible GF(2)[X] polynomials ir_i with index i (i.e. A014580(i)), a(ir_i) = A000040(i) and for composite polynomials n = A048723(ir_i, e_i) X A048723(ir_j, e_j) X A048723(ir_k, e_k) X ..., a(n) = a(ir_i)^a(e_i) * a(ir_j)^(a(1+e_j)-1) * a(ir_k)^(a(1+e_k)-1) * ... = A000040(i)^a(e_i) * A000040(j)^(a(1+e_j)-1) * A000040(k)^(a(1+e_k)-1), where X stands for carryless multiplication of GF(2)[X] polynomials (A048720) and A048723(n, y) raises the n-th GF(2)[X] polynomial to the y:th power, while * is the ordinary multiplication and ^ is the ordinary exponentiation. Here ir_i is the most significant (largest) irreducible polynomial in the factorization of n; its exponent e_i is not incremented before the recursion step, while the exponents of less significant factors e_j, e_k, ... are incremented by one before recursing and the result of the recursion is decremented by one before use.