A106443 Exponent-recursed cross-domain bijection from GF(2)[X] to N. Position of A106456(n) in A075166.
0, 1, 2, 3, 4, 9, 6, 5, 8, 15, 18, 7, 12, 11, 10, 27, 16, 81, 30, 13, 36, 25, 14, 33, 24, 17, 22, 45, 20, 21, 54, 19, 512, 57, 162, 55, 60, 23, 26, 63, 72, 29, 50, 51, 28, 135, 66, 31, 768, 35, 34, 19683, 44, 39, 90, 37, 40, 99, 42, 41, 108, 43, 38, 75, 64, 225, 114, 47
Offset: 0
Keywords
Examples
a(5) = 9, as 5 encodes the GF(2)[X] polynomial x^2+1, which is the square of the second irreducible GF(2)[X] polynomial x+1 (encoded as 3) and the square of the second prime is 3^2=9. a(32) = a(A048723(2,5)) = 2^a(5) = 2^9 = 512. a(48) = a(3 X A048723(2,4)) = 3 * 2^(a(4+1)-1) = 3 * 2^(9-1) = 3 * 256 = 768.
Links
Formula
a(0)=0, a(1)=1. For irreducible GF(2)[X] polynomials ir_i with index i (i.e. A014580(i)), a(ir_i) = A000040(i) and for composite polynomials n = A048723(ir_i, e_i) X A048723(ir_j, e_j) X A048723(ir_k, e_k) X ..., a(n) = a(ir_i)^a(e_i) * a(ir_j)^(a(1+e_j)-1) * a(ir_k)^(a(1+e_k)-1) * ... = A000040(i)^a(e_i) * A000040(j)^(a(1+e_j)-1) * A000040(k)^(a(1+e_k)-1), where X stands for carryless multiplication of GF(2)[X] polynomials (A048720) and A048723(n, y) raises the n-th GF(2)[X] polynomial to the y:th power, while * is the ordinary multiplication and ^ is the ordinary exponentiation. Here ir_i is the most significant (largest) irreducible polynomial in the factorization of n; its exponent e_i is not incremented before the recursion step, while the exponents of less significant factors e_j, e_k, ... are incremented by one before recursing and the result of the recursion is decremented by one before use.
Comments