cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106447 Doubly-recursed cross-domain bijection from GF(2)[X] to N. Variant of A091205 and A106445.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 6, 5, 8, 15, 18, 7, 12, 23, 10, 27, 16, 81, 30, 13, 36, 25, 14, 69, 24, 11, 46, 45, 20, 21, 54, 19, 512, 57, 162, 115, 60, 47, 26, 63, 72, 61, 50, 33, 28, 135, 138, 17, 48, 35, 22, 19683, 92, 39, 90, 37, 40, 207, 42, 83, 108, 29, 38, 75, 64, 225, 114
Offset: 0

Views

Author

Antti Karttunen, May 09 2005

Keywords

Comments

Differs from A091205 for the first time at n=32, where A091205(32)=32, while a(32)=512. Differs from A106445 for the first time at n=13, where A106445(13)=11, while a(13)=23.

Examples

			a(5) = 9, as 5 encodes the GF(2)[X] polynomial x^2+1, which is the square of the second irreducible GF(2)[X] polynomial x+1 (encoded as 3), a(2)=2 and the square of the second prime is 3^2=9. a(13) = a(A014580(5)) = A000040(a(5)) = A000040(9) = 23. a(32) = a(A048723(2,5)) = a(2)^a(5) = 2^9 = 512. a(48) = a(3 X A048723(2,4)) = a(3) * a(2)^a(4) = 3 * 2^4 = 3 * 16 = 48.
		

Crossrefs

Inverse: A106446. Variant: A091205.

Formula

a(0)=0, a(1)=1. For irreducible GF(2)[X] polynomials ir_i with index i (i.e. A014580(i)), a(ir_i) = A000040(a(i)) and for composite polynomials n = A048723(ir_i, e_i) X A048723(ir_j, e_j) X A048723(ir_k, e_k) X ..., a(n) = a(ir_i)^a(e_i) * a(ir_j)^a(e_j) * a(ir_k)^a(e_k) * ... = A000040(a(i))^a(e_i) * A000040(a(j))^a(e_j) * A000040(a(k))^a(e_k), where X stands for carryless multiplication of GF(2)[X] polynomials (A048720) and A048723(n, y) raises the n-th GF(2)[X] polynomial to the y:th power, while * is the ordinary multiplication and ^ is the ordinary exponentiation.